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e Natural way to keep some data correlations (a flow is a group of
correlated packets).

e Different levels of the workload characterization (the most impor-
tant case is the user-oriented one)

e More useful terms to describe various traffic properties (for example,
natural EC behavior).

This approach has a great potential for successful traffic processing and
analysis and it is sure to be put in practice by the modern research.
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Abstract

Searching the Hilbert basis of an arbitrary system of linear Diophan-
tine equations in non-negative integers is more complex in general than
problems in the complexity class NP. We consider a special class of such
systems—systems associated with context-free grammars, which was in-
troduced in our previous work. Some of its subclasses can be efficiently
solved (polynomial or pseudo-polynomial time complexity). The paper
presents several new algorithms for searching the Hilbert basis of sys-
tems belonging to these subclasses.
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1 Introduction

Let Z be a set of integers and Z 4 be a set of non-negative integers. A
system of n non-negative linear Diophantine equations (NLDE) in m un-
knowns can be written as follows:

Az =b, (1.1)

where A is an integer (n x m)-matrix, x € Z? is a vector of unknowns,
and b is a vector in Z". Solutions of system (1.1) is restricted with non-
negative integer vectors that is a reason for the letter “N” to be in the
introduced notation “NLDE”.

As a rule, a complete solution for system (1.1) means searching its
Hilbert basis—a pair (N, H) of finite sets such that a set S of all solutions
can be represented as (see [1, 2|)

S=N+H*,

where H* is a set of all non-negative linear combinations of elements of H.
In other words, any solution x € S can be expressed as

q
=00 +3 ah®, hOenN, H:{h<1>,h<2>,...,h<4>}
s=1

for arbitrary non-negative integers a,, s = 1,2,...,q. Elements of N are
all minimal' solutions of system (1.1). Elements of A are all minimal
solutions of the corresponding homogenous system:

Az=0. (1.2)

A problem of finding any solution for system (1.1) is known to be
NP-complete [1]. Searching of the whole basis is even more complex, be-
cause the cardinality of the basis increases exponentially with n, m and
[|(A4,b)||, where ||(A,b)]| is a norm of coefficients. The study of special
classes of NLDE systems is therefore concentrated in constructing algo-
rithms dedicated for these particular classes. An interesting case is NLDE
systems associated with context-free (CF) grammars. They were firstly
introduced by M. Filgueiras and A. Tomds [3]| (some particular type of
these systems).

LA solution z is minimal if there is no other solution y such that z > y (the
component-wise partial order z; > y;, ¢ = 1,2,...,m). It is easy to see that if z is not
minimal then it can be decomposed as £ = y + h, where h is a non-zero solution of
homogenous system (1.2).
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In this paper we introduce a class of the associated NLDE system
(ANLDE) in a more general form than in |3] and present new algorithms
for solving some of its subclasses. These algorithms are characterized with
polynomial or pseudo-polynomial time complexity and are significantly
more efficient than existing “universal” algorithms for solving arbitrary
NLDE systems.

We use the terminology and notation of the formal languages theory
similar to monographs of A. Aho and J. Ullman [4], and S. Sippu and
E. Soisalon-Soininen [5]. A CF-grammar G is defined as a quadruple
(N,X,P,S), where N = {A;, Ao, ..., A,} is a nonterminal alphabet, ¥ =
{ai,aq,...,a¢} is a terminal alphabet, P = {ry,ra,...,r} is a set of
grammar rules in the form r; = (4 — p) for some nonterminal A € N
and string p € (N U X)", S is a start symbol. For the study a start symbol
is not important and we denote a grammar as G = (N, X, P, ).

The rest of the paper is organized as follows. In Section 2 we introduce
a class of ANLDE system, consider its important subclasses and discuss
some properties of these systems related to CF-grammars. Based on these
properties we present in Section 3 several new efficient algorithms for
searching Hilbert basis of the systems belonging to the subclasses.

2 Systems Associated with Context—Free
Grammars

In this section we introduce a wide class of NLDE systems. The sys-
tems are constructed according to a given CF-grammar and two arbitrary
strings over the grammar alphabet. The solutions of these systems are
strongly connected with certain derivations in the grammar and this prop-
erty is intensively used to construct several solving algorithms presented
in Section 3. The detailed theoretical background of the discussed issues
can be found in [6-9].

2.1 Construction

Let G = (N,%,P,") be a CF-grammar and strings w',w" € (NUX)".
One can construct the following NLDE system:

n
S zi+ B84 =3 viaz; +aa for all nonterminals A € N
ZEIHA =1 (21)

S viam; + ag = B, for all terminals a € ¥,
i=1
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where H 4 is a set? of indices of those grammar rules whose left-hand side
is equal to the nonterminal A; the values a4 and «, are the numbers
of occurrences in the string w' respectively the nonterminal A and the
terminal a; the values S84 and 8, are the same as a4 and «, but in the
string w"; the values ;4 and ~;, are the numbers of occurrences in a
right-hand side of the rule r; respectively A and a.

The system has m + ¢ equations—one for each symbol (nonterminal or
terminal) and n unknowns—one for each grammar rule. Each unknown z;
is allowed to take non-negative integers only. This system is called an
associated NLDE system (ANLDE), and the corresponding grammar—a
generative grammar.

Let a derivation w’ =% w" exist in G. We consider a vector £ € Z7}
such that each component &; is equal to the number of times the rule r;
is applied during the fixed derivation w’ =+ w".

Theorem 1 The vector & is a solution of system (2.1).

This fact® is explained as follows. At the beginning of any successful
derivation w' =71 w' there is a4 occurrences of each nonterminal A,
because we start the derivation with the string w’. At the end it is equal
to B4, because we finish the derivation with the string w'. The sum

> &; is the number of times the nonterminal A is expanded during the
i€H 4
n
derivation, the second sum Y v;4&; is the number of times it is produced:

i=1
each expansion of A with a rule r; decrements by one the number of
occurrences of A in the current sentential form and increments by ~v;p
the number of occurrences of each nonterminal B € N. Thus, there were
n
a4 nonterminals A in w', then Y v;4&; occurrences of the nonterminal
i=1
A had appeared and ) &; occurrences simultaneously had disappeared,
i€HA
but at the end of the derivations 84 occurrences are preserved. This is a
reason for ¢ to satisfy all nonterminal equations of the system. Similarly,
the number of times a terminal occurs in w is equal to a sum of the
number of times it occurs in w' and the number of times it is produced?.

2Formally Hy = {i | r; = (A — p)}, where r; is the ith grammar rule, A is a
left-hand side and p is a right-hand side of the rule.

3See the proof in [6].

4Terminals can not be expanded in contrast to nonterminal symbols.
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2.2 Subclasses of the Associated Systems

Restricting w' and w"” one can derive some particular subclasses of
ANLDE systems (2.1). Let us introduce several of them.

Derivation of a sentence starting from a nonterminal

In this case the string w' is a single nonterminal Ay, w is a sentence de-
rived from Ay in G: w" € Lg(Ayg), where Lg(Ayg) is a set of all sentential
forms of Ay in G, or in other words the language generated by Ay.

n
> x; =Y via, 2x + 1 for the start symbol Ay

1€H A, =1
n
S = viaz, forall Ae N\ {4} (2.2)
i€EH 4 =1
n
> Yka®i=PBa forallaeX,
i=1

The nonterminal Ay, is considered as a start symbol of G. This subclass
of ANLDE systems was introduced by M. Filgueiras and A. Tomds [3].
Derivation of empty string starting from a nonterminal

A particular case of previous one when w' = Ay, w” = . It is evident
that there must be no terminal symbols in any derivation Ay =7 €.

n
>ox; =) via, i +1 for the start symbol A

1€H 4, =1

n (2.3)
Z wz:Z’YzAmz fOrallAeN\{Ak}7

i€Ha i=1

We denote such a system as e-ANLDE system.

Nonterminal-to—nonterminal derivation
Here w' = Ay, w" = A;. If k # j then ANLDE system has the form:

( n
Z x; = Z’y,'AkSEi-l-l
iGHAk i=1
n
S X mit1l=3 via,w (2.4)
iEHAJ- i=1
n
Z €Tr; = Z'yiAa;i for allAEN\{Ak,Aj},
\ i€H,y i=1

We denote such a system as (4,B)-ANLDE system. In the case of k = j
the system is homogenous:
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n
> zi=) viaw forall A€ N . (2.5)

1€EH 4 i=1

It is called a homogenous ANLDE system.

2.3 Solutions, derivations and cycles

A cycle is a derivation A =% aAB for some strings a, 3 € (NUX)". A
cycle is empty if af = . A derivation oo =1 § is minimal if it does not
contain empty cycles. An empty cycle is minimal if it does not contain
another empty cycle.

Theorem 1 states that for any derivation w’ =t w" there is the corre-
sponding solution & of system (2.1). However there may exist such solu-
tions that correspond to another derivation v’ =T v" or such ones that do
not correspond to any successful derivation in the generative grammar G.
Moreover, it is possible that w' is not derivable from w' in G. The first
case appears because the associated system does not contain information
on the order of symbols in sentential forms. The reason of the second case
is the existence of cycles in the grammar.

A minimal (basis) solution of ANLDE system does not always corre-
spond to a standard derivation w’ =% w". For this reason we introduce a
generalized derivation as a set of standard derivations {w} =% w},w) =+
wY,...,w; =1 w'} such that for each grammar symbol X € N UX the
equality

oce( X, wiwy ... w}") — oce(X, wiw) ... w;) = oce(X,w") — oce(X, w')

is satisfied, where occ(X,w) is the number of occurrences of the symbol
X in the string w.

It can be proved that any solution of ANLDE-system corresponds to
a minimal generalized derivation plus a non-negative linear combination
of all minimal empty cycles of the grammar.

Theorem 2 Any solution of ANLDE system (2.1) can be expressed as®:
T = yw’:>+w” + 9, (2.6)

5The proof can be found in [6]
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’ +,,,01 . . . ..
where y¥ = Y is a solution component corresponding to a minimal gen-
eralized derivation w' =1 w", y° is a component corresponding to a

multiset’ of minimal empty cycles.

Theorem 2 reduces a problem of solving ANLDE system to search-
ing some minimal derivations and empty cycles in G. These minimal
derivations form the set N of all minimal solutions of system (2.1), and
the minimal empty cycles form the set A of all minimal solutions of the
homogenous system for (2.1).

Example 1 Let G be a CF-grammar with N = {A;, A2}, ¥ = @, and
P = { A1 e A1A1A2 5 A1 — A2A2 y A2 e A1A1A1A2 5 A2 — & }
G and (A1, ¢) generate the e-ANLDE system:

1+ 2o =221 +323+1 s o =21 +3x3+1
T3+ x4 =21 + 222 + 23 T4 =21 + 222

The derivation 4; 2 AsAy 3 AsA; A1 A1 Ay 5 Ay A1A1A1A S
AjA A1 A BB T A A A Ay As Ay B AsAsAsArAy 228 A, B ¢
corresponds to the nonminimal solution z = (0,4,1,8). It can be
decomposed as z = yAi='e 4 45 = (0,1,0,2) + (0,3,1,6), where
yA1:>+5 corresponds to the minimal derivation A, =N Ag Ay &N
A; = e, and y° corresponds to the minimal empty cycle Ay =
A A Ay ArZEE T Ay Ay Ay Ay Ay Ay Ay 228 A, or the similar minimal empty
cycle Ay 2 Ag Ay 2 AjAJ A Ag Ay =5+ Ay Ay Ay Ay Ay A A S5+ A

The Hilbert basis is N = {(0,1,0,2} and H = {(0,3,1,6),(1,1,0,3)},
where the minimal solution (1,1,0,3) of the homogenous system corre-
sponds to the minimal empty cycle A; D A A1 Ay S A A As Ay 25T A,

3 Solving the Associated Systems

A large number of various algorithms have been proposed by numerous
authors for solving linear Diophantine equations: G. Huet [10], M. Clausen
and A. Fortenbacher [11], E. Contejean and H. Devie [12], A. Tomés
and M. Filgueiras [13], L. Pottier [14], A. Boudet and H. Comon [15],
E. Domenjoud and A. Tomss [2], E. Contejean [16], and F. Ajili and
E. Contejean [17]. The most of them solve homogenous systems, because
any NLDE-system can be transformed into an equivalent homogenous

SMultiset is a set in which elements may be repeated.
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one. These algorithms are based on some enumeration methods and it
makes them applicable only if absolute values of coefficients ||(A,b)|| and
dimension n x m are small.

In this section we introduce several new efficient algorithms for solving
i) e-ANLDE systems (2.3), ii) (4,B)-ANLDE system (2.4), and iii) ho-
mogenous ANLDE systems (2.5).

3.1 Strings and vectors of Z""*

ANLDE system (2.1) does not take into account the order of symbols in
strings involved in derivations. It means that there is no need to preserve
the order during a derivation. As a result one can get more efficient ways
to store strings over N U X.

Any string in (N U £)" can be described with a vector o € Z}". Each
component o; (I =1,2,...,n+t) is equal to the number of occurrences of
each symbol of NUYE = {X1, X5, ..., X,,1+} in this string. As a result, the
derivation w’ =% w' can be presented as a path in Zi‘”. This description
is significantly more practical than to store a string directly as it can have
an arbitrary length.

Example 2 Let G be a CF-grammar from Example 1. It can be stored
as the following matrix:

N DN ==
O W OoON
O = N

The derivation 41 = AyAds = Ay A1A1A1As = ArA A1 A4, S
A1 AT ALA] BB A0 AgAgAsAs Ay 2 Ay Ay As As Ay 225+ Ay 2 ¢ can be
presented as the path in Z3: (1,0) = (0,2) — (3,2) — (4,1) = (4,0) =»*
(0,6) = (0,5) =+ (0,1) = (0,0).

3.2 Algorithm for solving e-ANLDE systems

Let IT;, be a set of all minimal solutions of e-ANLDE system (2.3). In this
case any solution 7 € Il corresponds to a standard derivation 4; =% ¢.
The simplest elements of II; corresponds to one-step derivations according
to a grammar rule Ay — €, i.e. if there exists a rule r; = (4 — €), then
a vector 7% = (0,...,0,1,0,...,0) € Z™ is a solution (the only 1 is
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on the ith place—the only application of the rule r;). To find all other
elements of II; one can use the well-known Dijkstra algorithm—a very
similar algorithm is known to decide whether or not empty string e belongs
to the language L(Ay), see [4, 5].

Algorithm 1 sums up these ideas. It uses the following notations:

pll is a set of all possible sums of p elements from II (these elements may
be repeated). Formally pIl = {n®1 +7®2+.. 47l | 70t 72 .. 7% €
IT}. For example, for p = 3 and II = {(1,2,0),(0,0,3)} the set pll
is equal to {(3,6,0),(2,4,3),(1,2,6),(0,0,9)}.

Algorithm 1 All minimal solutions of e-ANLDE system
(for all nonterminal symbols A, k =1,2,...,n)

Require: Sets NV and P,
N ={A;,A,,...,A,} —nonterminal alphabet,

P ={ri,ra,...,7} —grammar rules in the form r = (4, — p) € P,
(p is presented as (p1,p2,.-.,pPn) € Z7).
Ensure: Sets Il for each £k =1,2,...,n.

Iy« @ k=1,2,...,n; {At the beginning II; are empty sets}
{Initialization of Il with the simplest empty rules A — ¢}
for all r; € P such that r; = (A — €) do
m ¢+ (0,0,...,1,...,0); {the only 1 is on the ith position}
Iy « I U {n};
end for
modif_flag < TRUE
while modif_flag = FALSE do {Iteration of all II}
modif_flag < FALSE
for all r; = (A, - p) € P do
U + min (e; + p11I; + polls + ... + p,I1,, I);
if U # @ then
modif_flag < TRUE;
Il « I, UU;
end if
end for
end while
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IT' + " is a set of all possible sums of an element form IT" and an element
from II". Formally II' + II" = {#' + 7" | «' € II',7" € II"}.
For example, for II' = {(3,6,0), (2,4,3),(1,2,6),(0,0,9)} and II" =
{(07 57 2)} the sum HI + HII = {(37 117 2)7 (27 97 5)7 (17 77 8)7 (07 57 11)}'

min(Il', IT) is a set of all minimal elements from II' U II.  For-
mally min(Il',1I) = {rell'ull|dr' e Ull,7' <7, #7}.
For example, for II' = {(1,2,0), (3,0,1), (0,0,2)} and II =
{(0,2,0), (3,0,1) } the set min(Il',II) contains the only vector
(0,0,2).

At each step of the iteration the algorithm constructs a set U =
min (e; + p1Iy + polls + ... + ppll,, II). It means that it tries to use
arule r; = (Ax — p) as the first rule of a derivation Ay = e. The appli-
cation of the rule results in a sentential form that is equal to its right-hand
side—there are p; occupancies of Ay, ps occupancies of As, ..., and p,
occupancies of A,,. Thus, to reduce it to € one should use p; derivations
A, =71 ¢, py derivations Ay =1 ¢, ..., and p, derivations 4, =7 ¢.

Algorithms searching the Hilbert basis can not be considered as NP
problems, because in general their output (N, H) is sized exponentially on
the input dimensions n x m. Thus we introduce an additional parameter
M that limits the size of the output and it will be used to describe the
complexity among with standard n and m. We call the complexity polyno-
mial if it is O(n®*mP M") for some a, 3,y > 0. The complexity is pseudo-
polynomial if a bound on absolute values of input (]|(A,b)|| < const)
makes it polynomial.

The total time complexity of Algorithm 1 is determined by the itera-
tion stage (Dijkstra algorithm). Let the cardinality of each Il be limited
with a constant M: |II;| < M for all k =1,2,...n. In the worst case at
each iteration there is only one element added to some IIy, ie. |U| = 1.
Thus, the number of the iterations is limited by Mnm.

The computation of U consumes additional time. Let N = max{p; |
r; = (A = p) € R}. Any set p;II; contains no more then Oy, n_y
elements. Therefore |piIly + poIla + ... + p,lIl,| < (CAIL_N_I)n. On
this assumption the complexity of the iteration stage is equal to
(Mnm) (C} . n_1)" m. Fortunately, it is possible to reduce the complex-
ity of U computation, constructing only those elements that are really
necessary for IIx and not to spend time for extra solutions (nonmini-
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mal or previously found). It means U can be constructed in time Mnm.
Therefore, we have

Theorem 3 Sets II;, can be constructed by Algorithm 1 in time’
mn + (Mnm)(Mnm) = O(M?n*m?) = O(M*m*) .

The theorem gives an upper bound of the time complexity of Algo-
rithm 1. In practice, this algorithm works faster, because the number of
the iterations and the cardinality of U compensate each other.

The most important disadvantage of the algorithm is that it solves n
e-ANLDE systems simultaneously, but it is not likely to be a satisfactory
way to search II; separately.

3.3 Algorithm for solving (4,B)-ANLDE systems

For solving the (Ay,A;)-ANLDE system one can use the sets II; con-
structed by Algorithm 1. Let Cj; be a set of all minimal solutions of the
(Ag,A;)-ANLDE system. Let r; = (Ay — p) be a grammar rule. The
simplest solutions corresponding to Ay =1 A; belong to the set:

oIl +pollo + .. 4+ pjaIlioq + (pj — DI + pjgpa Il + ...+ pull,

It means that the algorithm tries to use the rule r; as the first rule of a
derivation. Reducing the sentential form p to A; requires p; derivations
Ay =T e, py derivations Ay =T ¢, ..., p; — 1 derivations 4; =% ¢, ...,
and p,, derivations A,, =1 ¢, This is performed in the initialization stage
of Algorithm 2.

Unfortunately, this does not result in all possible minimal solutions,
but it is a complete base for the next stage that iteratively constructs the
remaining solutions; if there are two derivations Ay =1 A, and 4, =T
Aj then they can be combined in the derivation Ay =% A;.

Let M be a constant limiting the cardinality of all sets II; and Cj;.
The initialization stage of Algorithm 2 works in time Mnm?. The itera-
tion stage (transitive closure) works in time n3M?3m.

Theorem 4 Sets Cy; can be constructed by Algorithm 2 in time

Mnm? + M3*nm = O(M3*m?) .

"For any ANLDE system n < m.
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Algorithm 2 All minimal solutions of (Aj,A4;)-ANLDE system
Ap,Aje Nforallk,j=1,2,...,n

Require: Sets NV, P and Iy,
N ={A;,A4,,...,A,} is a nonterminal alphabet of the grammar,

P ={ry,ra,...,rn}is the grammar rules in the form r = (A —p) € P,

IIj, is the set of all minimal solutions of e-ANLDE system for the non-
terminal Ay, € N, k,j =1,2,...,n.

Ensure: Sets Cy; for all k,j =1,2,...,n.
Crj <@ k,j=1,2,...,n; {At the beginning Cy; are empty sets}
for all r; = (Ax — p) € P do {Initialization of the sets Cy;}

for j =1ton do
if p; > 0 then

U« min(ei +pilly +pally + ..o+ pja Iy + (p; — DI+

+pis1llip1 + ...+ pully, ij);
ij — ij uuU,
end if
end for
end for

for s =1 to n do {Transitive closure of the sets Cy;}
fork=1ton, k#sdo
for j=1ton,j+#sdo
U < min (Cks + Csj, ij);
Ck]‘ — Ck]‘ uuU,;
end for
end for
end for

This algorithm can be used for solving the most important ANLDE
n

subclass—homogenous ANLDE. In this case |J Ciy is a set of all minimal
k=1

solutions of homogenous ANLDE system (2.5) (all minimal empty cycles).

Algorithm 2 simultaneously constructs all sets Cy;. However, there

is an algorithm based on Algorithm 1 that simultaneously constructs
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all II; and Cy; for fixed k and j. This algorithm uses a fact that®
ck) + 700 = 7 where ¢k € Cy;, 79 € II;, and 7®) corresponds
to A, =1 . We omit to present this algorithm in the paper because
its understanding requires additional theoretical background. This algo-
rithm is more efficient than Algorithm 2 both in time and space, and its
theoretical time complexity is O(M?m?).

3.4 Tests

We have tested the algorithms on specially generated homogenous
ANLDE systems. The dimensions of the generated systems were in range:
n € [1,1000], m € [n,n + 200], p; € [0,500]. The systems were generated
in such a way that each of them has at least one solution but not more
than 200. Figures 1 and 2 shows the results on 7267 sample.

To test the implementation we use an integer linear programming
solver®. It can find only one solution in accordance with some cost func-
tion. For each ANLDE system we run our algorithm to construct H, then
run the ILP solver several times and tested that the found solution could
be represented with the Hilbert basis. The ILP solver used significantly
more time than our grammar-based algorithm —several hours or days!®,
but our algorithm nearly always worked in less than a minute.

The experiment results approve nonlinear increasing of the complexity
(see Figure 1). In Figure 2 we can see that the complexity is approxi-
mately linear if one considers it as a function of the number of minimal
solutions. It allows to conclude that the algorithm works approximately
in time ©(Mm?) in the average case.

The angle of the complexity in m = 1000 in Figure 1 is a result of
our generating strategy: n has an upper limit 1000, but m can exceed it
on 200. Thus, in the case of m € (1000, 1200] there is always n<m and as
a result the system always has more than one solution: the more the dif-
ference m—n is then a system is less constrained the more solutions it has.

81t is easy to see that two derivations Ay, =+ A; and A; =% £ can be combined
into the derivation Ay =7 e.

IM. Berkelaar, Ip_solver, ftp://ftp.ics.ele.tue.nl/pub/lp_solve/

10Sometimes we had to stop the ILP solver because it worked too long. ILP is
satisfactory for very small dimensions like m € [1,30] and its performance decreases
rapidly (exponentially) with the growth of m.
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4 Conclusion

We gave several algorithms for solving special subclasses of non-negative
linear Diophantine systems. These subclasses belong to a class of associ-
ated with context-free grammars systems. The problem of solving these
systems is reduced to computing some derivations in generative gram-
mars. This allows using the well-known parsing methods.

The attractive property of our algorithms is their polynomial and
pseudo-polynomial time complexity. They are significantly more efficient
than “universal” algorithms for solving arbitrary non-negative linear Dio-
phantine systems and can be used even for very large systems.
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