PRESENTATION 14

cs.lmeh\aﬁ Department of Computer Science
University of Petrozavodsk

The Web-SynDic System: Input Data

Translation, Session Management and
Activity Statistics

Andrey Y. Salo

Abstract

The Web-SynDic project is a student software engineering (SE) project of the Petroza-
vodsk State University (PetrSU), Department of Computer Science (CSDept). The project
is also held in the framework of cooperation between the CS Departments of PetrSU and
the University of Helsinki (UH). CSDept of UH helps the PetrSU student team to study
SE standards and technology and makes an expert estimation of the process.

The project is related to the research done at CSDept of PetrSU. The research deals with
the development of a new type of algorithms for efficient solving some classes of nonnegative
linear Diophantine equations (NLDE) by syntactic (parsing) methods. The objectives of
the project include the following.

e A need of a web system to present current research results on the syntactic algorithms;

e A practical exercise for PetrSU students in software engineering standards and tech-
nology;

e Training the PetrSU students to participate in a joint distributed (via Internet) SE
project with UH students (it is started at January 2004).

The waterfall model is chosen for the software process. Requirements analysis is per-
formed by the whole team. During “Design”, “Implementation”, and “Testing” phases each
developer has a number of assigned system modules. My part consists of the following
modules:

1. Input data translators;
2. Session management subsystem;

3. Activity statistics subsystem.

Input Data Translators

One of the most important parts of the user interface is input data conversion. The
basic input data consists of ANLDE systems and ANLDE system sets. The input data
translators, which are used to convert ANLDE systems and ANLDE system sets from
traditional mathematical style to internal memory data structures, are described in this
section.

ANLDE System Format

Format:

Comment

x1 + x2 + ... + xK2 = cli*x1 + c12%xx2 + ... + cI1N*xN

x[K2+1] + x[K2+2] + ... + xK3 = c21*x1 + c22*x2 + ... + c2N*xN

x[KM+1] + x[KM+2] + ... + xN = cMi*x1l + cM2*x2 + ... + cMN*xN
Description: The format represents an ANLDE system. cl1, c¢12, ..., ¢IN, ¢21, ¢22,
..., c MN are coeflicients (optional, default value is 1). x1, x2, ..., xN are unknowns, may

w_»

appear in any order, some may be skipped. If there is no unknowns after the sign,
write “0”. Each unknown must appear in the left-hand side of some equation at most one
time. Blank and comment lines are ignored.

Sample:

Sample ANLDE system

x1 + x4 = 2%x1 + 3*x3

x2 + x3 = x1 + 2%x2 + x3

ANLDE System Set Format

Format:

<ANLDE system 1>
T

<ANLDE system 2>
T

<ANLDE System N>

Description: The format represents ANLDE System Set (ANLDE System 1), ...,
(ANLDE System N). Each system is in the ANLDE System Input Format (sect.). Blank
and comment lines are ignored. String with symbols(s) "%’ is a delimiter for ANLDE sys-
tems. These strings may additionally contain blank symbols (’.)’, '\t’) only.

ANLDE System Parser Generation

ANLDE system parser is constructed from two files containing specifications for syntax an-
alyzer and lexical analyzer. Files with specifications are translated to Java source files using

Byacc/J and JFlex. The generated class ANLDESystemParser is used by class ANLDEParser
to translate single ANLDE systems. The generated class ANLDESystemLexer is used by
ANLDESystemParser as a scanner.

Flex specification:

INT = [0-9]+
VAR = [A-Za-z] [A-Za-z0-9]*

NL

[(\r\n]+

YACC specification:

input:

| input line

H

line: NL

| left ’=’ right NL
| left ’=? INT NL

left: VAR

| left ’+’ VAR

]

right: item

| right ’+’ item

]

item: VAR

| INT ’%’ VAR

H

/*

/*

/%
/ *

/* integer value */
/* variable name */
/* newline */

empty input */

a line containing an equation */
a line containing an equation
with zero right-hand part */

rule for left-hand part of ANLDE */

rule for right-hand part of ANLDE */

coefficient before variable equals to 1 */
coefficient before variable equals to INT */

If an error has been matched while parsing, ANLDEFormatException containing error
description and line number is thrown. If during the translation coefficients, equations, or

unknowns limit has been exceeded, ANLDEFormatException is also thrown.
The generation process consists of two steps:

1. The file containing Flex specification of lexical scanner is passed to JFlex tool and
ANLDESystemLexer class is generated.

2. The file containing Yacc specification of syntax analyzer which uses ANLDESystem-
Lexer as lexical scanner are passed to Byacc/J tool and ANLDESystemParser class is

generated.

Session Management

One of the main concept of the Web-SynDic system is session. There are two types of
sessions: a physical server session and a logical Web-SynDic session. Web-SynDic session
stores all information about current work in the system, for example ANLDE systems, user
profile etc. Web-SynDic session is a continuous time period of user’s working with the
Web-SynDic. Further we will use term “session” instead of “Web-SynDic session”.

Session is established when any user (regular on registered) start to use the system. It
is open while a user logs out or closes the connection. If a user logs out, then the session is
closed at once, but if a user closes the connection, for example closes the browser window,
the session is still alive for a some period of time (default is 15 min and configured by
Jakarta Tomcat server).

If a user has established a session and does not use the system with a large time period
the session will be terminated automatically. For using the web-system a user should
establish a session again.

Each session has own identifier on the server side. A new identifier of session is generated
whenever the session has been established.

If cookies are enabled in user’s browser, then the identifier of server session is passed by
cookies. If they are disabled the session identifier is passed by the URL string in a browser
window.

Class SessionManager is used to store user profile, limits, statistics and last solved
ANLDE system information. It is shown in Fig. 1.

Management

ANLDE

Limits

Statistics

UserProfile

Figure 1: Class SessionManager

Activity Statistics

Administrator has ability to view activity statistics, collected by the web system. The
activity statistics mean summarized information appropriate to selected domain and metrics
for current month. Activity statistics domain is a criterion by which statistics information
is summarized. Nickname or IP address can be selected as the domain of the report.
Activity statistics metrics define categories for statistics report. Number of sessions, total
sessions time, requests for solving, requests for generation, total system time, total work
time, agreements with solutions can be selected as metrics for a required report. A statistics
report contains time of report generation and statistics information appropriate to selected
domain and metrics for current month. Records in the report are sorted by domain.

The class diagram used in activity statistics subsystem is shown in Fig. 2.

Statistics

- hickname : String
- ip : String

- gensys : int

- inputsys : int

- solvedsys :int

- acknowsys : int

- notmatch @ int

- systime : float

- worktime : float

- memory : int

+ Statistics({nickname : String, ip : String)
+valueUnbound{event : HitpSessionBindingEvent) : void

StatisticsStore

Report

- domain : String
- metric : String

+ Report{domain : String, metric : String)
+ setDomain{domain : String) : void

+ getDamain{) : String

+ setMetric{metric : String) : void

+ getMetric() : String

Figure 2: Activity statistics

