MununcrepcTBo obpazosanus Poccuitckoit Peneparun
[TerpozaBoscKmit TOCYyTapCTBEHHDBIN YHUBEPCUTET
MaremaTuuecknit paKyabTeT
Kadenpa udopmaTruky 1 MareMaTHyecKoro o0ecredeHunst

Camo Annpeit FOpbeBuu

The Web-SynDic project: input data translation,
session management, and activity statistics

510200 — Ilpukmagnas MaTeMaTuKa W WHPOPMaATHKA

Brimycknaas kBaaudukammonnasg paboTta bakaaaBpa

Haydamble pykoBoguTe n:

K.T.H., JIOLIEHT,
Borogsaenckag O. TO.

K..-M.H., CT. IIPerojaBaTeb,
Kopayn /1. 7K.

ITerpozaBoack — 2004

Contents

Introduction
1 Problem & Software Domain
1.1 Structure of the problem domain L.
1.2 Conceptual models and glossary of the problem domain
1.2.1 High-level objectso
1.2.2 ANLDE system processing oo
1.2.3 Supplementary user actions L.
1.2.4 User management and administration
1.3 System Architecture L
2 Input data conversion
2.1 ANLDE System Format
2.2 ANLDE System Set Format
2.3 ANLDE System Parser Generation
2.4 ClasSes v v i e e e e e e e e e
3 Session management
3.1 Session concept e e
3.2 Classes o e e e e e e
4 Activity statistics
4.1 Activity Domain List Format
4.2 Activity Metrics List Format
4.3 Statistics Report Format o
4.4 Classes v v e e e e
Conclusion

A Collection of the User Requirements

A.1 Functions of the web system
A2 Usability
A3 Security
A4 Performance
A5 Deployment

References

13
13
13
13
15

17
17
17

18
19
19
19
20

24

24
24
26
26
27
27

27

Introduction

The Web-SynDic project is a student software engineering (SE) project of the Petrozavodsk
State University (PetrSU), Department of Computer Science (CSDept). The project is also held
in the framework of cooperation between the CS Departments of PetrSU and the University
of Helsinki (UH). CSDept of UH helps the PetrSU student team to study SE standards and
technology and makes an expert estimation of the process.

The project is related to the research done at CSDept of PetrSU. The research deals with
the development of a new type of algorithms for efficient solving some classes of nonnegative
linear Diophantine equations (NLDE) by syntactic (parsing) methods.

These syntactic algorithms, developed at CSDept, seem to be promising tool for solving
some classes of NLDE system — more exactly a class of NLDE system, associated with for-
mal grammars (ANLDE systems). The algorithms allow efficient (polynomial) computations
comparing with the general NLDE case when the same problems are NP-complete or even
overNP.

The customer is CSDept of PetrSU, whose representative is the head of CSDept Dr. Yury
Bogoyavlenskiy. The key aim is to design and implement a working version of a web system
for visual demonstrating and testing the syntactic algorithms via the Internet. The objectives
of the project include the following.

e A need of a web system to present current research results on the syntactic algorithms;
e A practical exercise for PetrSU students in software engineering standards and technology;

e Training the PetrSU students to participate in a joint distributed (via Internet) SE project
with UH students (it is started at January 2004).

The web system must be developed according with international principles, practice, stan-
dards and recommendations of SE. The Project starts on 16.07.2003. Working language of
the Project is English. All artifacts are replicated in Russian. From the start of the project,
students have to work 20 hours/week.

The waterfall model is chosen for the software process. The customer may slightly change the
requirements during “Requirements analysis” and “Design” phases; after that the requirements
are frozen. Requirements analysis was performed by the whole team; the results are presented
in chapter 1.

During “Design”, “Implementation”, and “Testing” phases each developer has a number of
assigned system modules. My part consists of the following modules:

1. Input data translators (chapter 2);
2. Session management subsystem (chapter 3);
3. Activity statistics subsystem (chapter 4).

The goal is to design, implement, and test the modules.

1 Problem & Software Domain

This section describes problem domain for the software. Several models of the problem domain
are presented.

In diagrams,different colors are used to emphasize roles of each problem domain object. The
convention about colors, used in models, is stated in Figure 1. The Web-SynDic area defines

Web-SynDic area sysadmin area supplemetary objects

Figure 1: Color convention for models

general bounds of the Web-SynDic system. The user area contains objects that user may have
access to. The sysadmin area is for activity of the system administrator. The confidential area
must not be accessible by a user (e.g. the external algorithms).

1.1 Structure of the problem domain

The problem domain can be divided into three parts: 1) the user side contains users with
a standard Internet browsers, 2) the Web-Syndic system does the required processing, and
3) the external algorithms are called by the Web-SynDic system for generating and solving test
ANLDE systems. The described structure is shown in Figure 2.

A user starts a session with Web-SynDic using a standard Internet browser. The web system
consists of three subsystems.

1. ANLDE system processing. A user inputs test ANLDE systems for solving and receive
the results (see Req. A.1). This is the primary user activity.

2. Supplementary actions. A user may require some additional functions as stated in the
User Requirements (see Req. A.1, and A.3). This is the secondary user activity.

3. Users management and administration (see Req. A.1, and A.3). This is area of the system
administrator.

Functions of each subsystem are presented in Figure 2 inside the boxes. References to the
expanded user requirements are given for each function in brackets.

For ANLDE system processing an execution of the external algorithms are required. They
include solvers (for solving test ANLDE systems) and generators (for automatic generation of
test ANLDE systems). These algorithms are not a part of Web-SynDic. The goals of Web-
SynDic is only to demonstrate and test their work.

User’s interactions with Web-SynDic are split into sessions. During a session a user may
define (manually or automatically) and solve test ANLDE systems and/or may perform sup-
plementary actions. System administrator may also perform management actions. The actions
may be interleaved. A session is implicitly established by a user when she/he has started a
Web-SynDic client via the browser; the session is terminated when the client has ended.

4

Web-SynDic system

External algorithms
ANLDE systems processing (primary user activity)
Long-term
user activity

| - processng a test ANLD system (EUla) B'
\

| - processing a set of ANLDE systems (EU1b) B'
\

\
A researcher in Diophantine analysis, \
formal grammars, integer

programming, etc.

Supplementary actions (secondary user activity)

|- registration (EU2a)

| - notes (EU2b)

1
O browser
X — session

user

- user limits management (EU2c)

| - login (EU2d)

I 7 I 7 N v B g

not accessible by a user,
only the result is visible
Users management and administration |
! | - users management (EU3a)
standard Internet
browser (HTML 4.01)

| - activity statistics (EU3b)

L7 L7 L

| - default limits management (EU3c)

Figure 2: Structure of the problem domain

1.2 Conceptual models and glossary of the problem domain
1.2.1 High-level objects

According with the structure of the problem domain, the following high-level entities and rela-
tions can be listed.

Algorithm server (or Web-SynDic algorithm server). Entity. A part of a Web-SynDic server
for execution of the external algorithms.

Browser (or Standard Internet browser). Entity. HTML 4.01 must be supported (e.g. Mi-
crosoft IExplorer, Mozilla, Netscape, etc.).

Client (or Web-SynDic client, or web client). Entity. A client part of the Web-SynDic system
It is started by a user via browser. Life-time of a client determines user’s session.

External algorithm (or demonstrated&tested algorithm). Entity. Solvers (for solving test
ANLDE systems) and generators (for automatic generation of test ANLDE systems).
These algorithms are not a part of Web-SynDic and are not accessible for users. The
goals of Web-SynDic is only to demonstrate and test the work of these algorithms.

Server (or Web-SynDic server). Entity. A server part of the Web-SynDic system. It coordi-
nates and performs the processing. It consists of a web server and algorithm server.

Session (or user session). Relation. It defines long-term user activity with the server. A
session is established and terminated implicitly by a user according with the corresponding
client.

User (or Web-SynDic user). Entity. A researcher or a person with an interest in Diophantine
analysis, formal grammars, integer programming, or related areas.

Web-SynDic (or Web-SynDic system, or web system). Entity. The anticipated software
system. The same name is used for the project.

Web server (or Web-SynDic web server). Entity. A part of a Web-SynDic server for sup-
porting all web-related services.

The composition model for these objects is shown in Figure 3. A user starts the client

O The algorithm is executed Ij

at the algorithm server
1

Web-SynDic system |
sessior HTTP

Server
Browser 0.*

Web client Web server

, calls
Started for each session Iﬁ

Figure 3: The composite model for high-level objects of the problem domain

User

via browser. This establishes the session. The client acts as interface to the web server. The
web server receives input from the user and communicates, if necessary, with the algorithm
server by calling the external algorithms. The web and algorithm servers compose together the
Web-SynDic server.

1.2.2 ANLDE system processing

ANLDE systems and related objects form the most complicated part of the problem domain.
More details can be found in the Maintenance Document.

ANLDE format Entity. Traditional mathematical style for NLDE system presentation in
text files. For instance:

TXT format formula
x1 + x2 = 2x1 + 3x3
x3 + x4 = x1 + 2x2 + x3 T+ Ty = 221 + 373
T3+ Ty = T1 + 279 + X3

ANLDE system Entity. NLDE system, associated with a CF-grammar:
E(l)r — Az =b.
ANLDE systems set (or set of ANLDE systems). Entity. A set of test ANLDE systems:
EOVIO)— AN =0, EQUI®) - AP z=0, ..., ENIW) - AM)z=0.

Usually the set is generated automatically by a generator and used for detailed analysis
of efficiency of a demonstrated/tested solver.

CF-grammar (or grammar). Entity. Formal context-free grammar. It is used for construct-
ing ANLDE systems.

Default limits Entity. Limits on solution process (see Req. AS4 [A.3]). They include max-
imum time, memory, absolute values of coefficients, maximum number of equations, un-
knowns, size of ANLDE systems set, solutions in Hilbert basis, maximum values of com-
ponents of a basis solution.

Hardware config Entity. Configuration of the hardware used for the algorithm server (see
Req. F1b.5 [A.1] and F2b.4 [A.1]).

Hilbert basis Entity. The unique finite basis of a test ANLDE system. It consists of all
minimal solutions:

{R 1 hD} czm

Generator Entity. The program for generating test ANLDE systems and/or their Hilbert
bases.

Minimal solution (or undecomposable solution, or basis solution). Entity. A particular
solution of a test ANLDE system that cannot be presented as a sum of two nontrivial
solutions. All minimal solutions form Hilbert basis.

NLDE Entity. Nonnegative linear Diophantine equation:
Ty + ks + o+ Ty, =0, a;,b€EZL, x; € 7ZL,.
Coeflicients are integers, solutions are in nonnegative integers.

NLDE system Entity. A system of NLDE:

a1121 + a10x9 + - - - + ATy = b1
a91T1 + Q0o + - - - + Aom Ty = b2

Up1X1 + Ap2Xo + - - - + QT = bn

or Av = b, where A€ Z"™, be Z", x € L.

Particular solution Entity. Any solution z of a test ANLDE system. The solution can be
described as a nonnegative linear combination of basis solutions:

z=ah +ah® 4+ b9 o, €7y,

Report on solution Entity. The result of a test ANLDE system processing. It may include
the test ANLDE system, found Hilbert basis or particular solution, and metrics of solver
efficiency (see Req. F1b [A.1] and F2b [A.1]).

Solver Entity. The program for searching Hilbert basis or a particular solution for a given
NLDE system.

Solver efficiency Entity. Metrics that show how efficiently a given solver solves a test
ANLDE system or ANLDE systems set. This includes time and memory consumption.

Solver outcome Entity. The primary outcome of solver execution. This is used for forming
the report on solution.

Test ANLDE system Entity. A homogeneous ANLDE system:
E(l)r — Az =b.

It is defined by a user (written manually by a user or generated automatically by a
generator). Web-SynDic processes this type of NLDE systems for demonstrating and
testing the syntactic algorithms.

User limits Entity. Limits on solution process, defined by a user (see Req. A.3).

The composition model for these objects is shown in Figure 4. A user inputs test ANLDE
systems (written manually by the user or generated automatically by a generator). These
systems are solved at the algorithm server (Hilbert basis or a particular solution are found).
The report on solution includes the found solution (the solver outcome), characteristics of
solver efficiency for these ANLDE systems, and hardware configuration of the algorithm server.
Solvers are executed according with user limits (or default ones for unregistered users).

1.2.3 Supplementary user actions

IP address Attribute. A particular case of a user ID. It is used for unregistered users.
Nickname Attribute. Unique user ID of a registered user.

Note Entity. An opinion of a user about the Web-SynDic or processing of certain test ANLDE
systems (see Req. A.1).

Password Attribute. Password of a registered user (secure).
Registration Relation. A process of user registration (see Req. A.1).

User ID Attribute. Identifier of a regular user. For an unregistered user this is its IP address,
for a registered one this is its nickname.

Web-SynDic system

_ANLDE format <

inputs instance
is presented in assotiation
ANLDE system CF-grammar

Test ANLDE system | 0.*
Minimal solution

il Hilbert basis NLDE syste NLDE
system

é 1
Particular solution | l

ANLDE systems set

o

describes

views \D
Solver outcome produces
Report on solution 0.*

Solver efficiency

has

default limits - -
hardware config lalgorithm server

anages s
control

user limits

uses.

Figure 4: Composition model for ANLDE system processing

User profile Entity. Data for a registered user account (nickname and password).

The composition model for these objects is shown in Figure 5. Any user has user ID (IP
address or nickname). A users may define or generated test ANLDE systems for processing.
She/He may view the result in reports on solution; solvers are executed at and the reports are
formed by the server. She/He may also send notes about Web-SynDic as a whole or about
concrete processing. In the latter case, the report on solution can be included to the note. A
user may control the solution process by management of her/his user limits.

1.2.4 User management and administration
Activity statistics Entity. Metrics of user activity (see Req. A.1).
Data store Entity. Data on user profiles and user activity.

Registered user Entity. A user who has complete the registration at Web-SynDic and got

a user profile (nickname and password).
Regular user Entity. Any user of the Web-SynDic system. She/He is identified by user ID.

Sysadmin (or system administrator, or administrator). Entity. A user who manages and con-
trol the Web-SynDic system. She/He maintains the data store, views activity statistics,
and manages default limits.

It is user ID Web-Syndic system registration
by default is needed

e _ | _ _| IPaddress D User ID q User profile [I J

nickname

password

has

generates

defines 0.*
O 0.* Test ANLDE system
;; 0. solves
user
sends may be included
0..x
0..* Note <> Report on solution
1.*
views 0..*
manages Default limits
forms
executes
executes
control
0.*
R < Server
serlimits | & _ _ _ - - - - - - - - - - -

Figure 5: Composition model for supplementary user actions

User activity Entity. Raw history (log) of user actions for producing the activity statistics.

The composition model for these objects is shown in Figure 6. A regular user is identified
by IP address and forms user activity. She/He may register and become a registered user with
nickname and password. A registered user may manage her/his own user limits. A special user
is sysadmin. She/He controls the web system by maintaining the data store (user management)
and managing default limits on solution process. She/He may also view activity statistics.

1.3 System Architecture

Initial architecture of Web-SynDic is shown in Figure 7.

The architecture summarizes the essentials of the developed conceptual models of the prob-
lem domain (see sect. 1).

Web system can be divided into several high-level modules. At first, the user uses browser
to interact with web system. There cannot be any other methods of interaction. Browser uses
HTTP application-level protocol to communicate with web system.

10

forms

*
Regular user -
has

User

has User ID

manages

Registered user . L "
Default limits controls User limits User profile IP address

nickname : String

password : String

0.* 0.*

o 9

Data store

manages

Sysadmin

maintains

views Activity statistics is presented as User activity

Figure 6: Composition model for user management and administration

It is considered that the client part is a visualization of the problem domain objects (see
sect. 1.2.1). It is what the user works with using browser. Actually browser interacts with web
server of web system, which is part of the server module destined to maintain all web services.
All processing of problem domain objects are also performed by server through algorithm server
— the part to execute all external algorithms. Server also performs all management and control
functions, and activity statistics evaluation.

All user information (including user limits, activity and profiles of registered users) is stored
in the data store, which is managed and kept updated by the server.

Thus, Web-SynDic system is an assembly of client part, server and data store. Browser (and
HTTP protocol) are external entities, which interacts with web system. Other external entities
are generator and solver of test ANLDE systems, they are not accessible by user. Server
communicates with them using algorithm server to execute external algorithms provided by
them.

11

HTTP Browser

transferring data <— - — - Presentations:

_ — - _> - Web pages
- Web forms

/N

|
1
|
1

1
|
|
t
|

\Web-SynDic \'/

4

Client Part Server Data store

Visualization of the N Functions: Information:

problem domain objects: - web & algorithm servers - registred user profiles
- processing | > - problem domain objects N - user limits

- managementé&statistics processing - user activity

- user registration < — 4 - management & control < -

- notes - activity statistics

\J/ |

Generation of
test ANLDE systems

Solving
test ANLDE systems

Figure 7: Initial architecture of the Web-SynDic system

12

2 Input data conversion

One of the most important parts of the user interface is input data conversion. The basic input
data consists of ANLDE systems and ANLDE system sets. The input data translators, which
are used to convert ANLDE systems and ANLDE system sets from traditional mathematical
style to internal memory data structures, are described in this section.

2.1 ANLDE System Format

Format:

Comment

x1 +x2 + ... + xK2 = cl1xx1 + ¢c12*%x2 + ... + clNx*xxN

x[K2+1] + x[K2+2] + ... + xK3 = c21*x1 + c22*%x2 + ... + c2N*xN

x[KM+1] + x[KM+2] + ... + xN = cMil*xl + cM2*x2 + ... + cMN*xN

Description: The format represents an ANLDE system. c11, c12, ..., cIN, c21, ¢22, ...
c¢MN are coefficients (optional, default value is 1). x1, x2, ..., xN are unknowns, may appear in

“w_»

any order, some may be skipped. If there is no unknowns after the sign, write “0”. Each
unknown must appear in the left-hand side of some equation at most one time. Blank and
comment lines are ignored.

Sample:

Sample ANLDE system
x1 + x4 = 2xx1 + 3%x3
x2 + x3 = x1 + 2*%x2 + x3

2.2 ANLDE System Set Format

Format:

<ANLDE system 1>
h

<ANLDE system 2>
h

<ANLDE System N>

Description: The format represents ANLDE System Set (ANLDE System 1), ..., (ANLDE
System N). Each system is in the ANLDE System Input Format (sect. 2.1). Blank and comment
lines are ignored. String with symbols(s) "%’ is a delimiter for ANLDE systems. These strings

70)

may additionally contain blank symbols (’’, "\t’) only.

2.3 ANLDE System Parser Generation

ANLDE system parser is constructed from two files containing specifications for syntax analyzer
and lexical analyzer. Files with specifications are translated to Java source files using Byacc/J
and JFlex. The generated class ANLDESystemParser is used by class ANLDEParser to translate

13

single ANLDE systems. The generated class ANLDESystemLexer is used by ANLDESystemParser

as a Scalner.

Flex specification:

INT = [0-9]+
VAR
NL

[\r\n]+

YACC specification:

input:
| input line

b

line: NL
| left ’=’ right NL
| left =’ INT NL
left: VAR
| left ’+’ VAR

right: item
| right ’+’ item

item: VAR
| INT ’=%° VAR

b

[A-Za-z] [A-Za-z0-9] *

/%

/*
/*

/*

/*
/%

/* integer value */
/* variable name */
/* newline */

empty input */

a line containing an equation */
a line containing an equation
with zero right-hand part */

rule for left-hand part of ANLDE */

rule for right-hand part of ANLDE */

coefficient before variable equals to 1 */
coefficient before variable equals to INT */

If an error has been matched while parsing, ANLDEFormatException containing error descrip-
tion and line number is thrown. If during the translation coefficients, equations, or unknowns
limit has been exceeded, ANLDEFormatException is also thrown.

The generation process consists of two steps:

1. The file containing Flex specification of lexical scanner is passed to JFlex tool and
ANLDESystemLexer class is generated.

2. The file containing Yacc specification of syntax analyzer which uses ANLDESystemLexer
as lexical scanner are passed to Byacc/J tool and ANLDESystemParser class is generated.

14

2.4 Classes

The input data conversion subsystem includes a number of classes, which are used to store pro-
cessed ANLDE systems, and to transfer the data between the other subsystems. The classes,
which are used to convert ANLDE systems and ANLDE system sets from traditional mathe-
matical style to internal memory data structures, are generated automatically using JFlex and
Byacc/J tools.

Class ANLDE

Description: class for storing a test ANLDE system or a set of ANLDE system.

Fields:
protected ANLDESystem system; — ANLDE system or null if a set of ANLDE systems
is stored. protected ANLDESystemSet systemSet; — a set of ANLDE systems or null if
ANLDE system is stored.

Constructors:
public ANLDE(ANLDESystem); — constructor for storing ANLDE system.
public ANLDE(); — empty constructor.
public ANLDE(ANLDESystemSet); — constructor for storing a set of ANLDE systems.

Methods:
public abstract void solved(SolverOutcome); — sends solved signal and solver outcome. This
method will be implemented in extending classes.
public abstract void generated(); — sends generated signal. This method will be imple-
mented in extending classes.
public abstract void error(String); — sends error signal. This method will be implemented
in extending classes.
public void setSystem(ANLDESystem); — sets ANLDE system specified system and ANLDE
system set to null.
public void setSystemSet(ANLDESystemSet); — sets a set of ANLDE systems to specifed
set and ANLDE system to null.
public ANLDESystem getSystem(); — returns ANLDE system.
public ANLDESystemSet getSystemSet(); — returns ANLDE system set.

Class ANLDESystem

Description: class for storing ANLDE system.

Fields:
private int n; — number of equations.
private int m; — number of unknowns.
private int[n][m] system; — matrix of coefficients.
private int[m] unknowns; — matrix of left part of ANLDE system.

15

private String[m] names; — list of unknowns names.

Constructors:
ANLDESystem(); — storing ANLDE system

Methods:
public int getN(); — returns number of equations.
public int getM(); — returns number of unknowns
public int[][| getSystem(); — returns matrix of coefficients.
public int[| getUnknowns(); — returns left part of ANLDE system.
public String[| getNames(); — returns list of unknowns names.
public void setN(int); — sets number of equations.
public void setM(int); — sets number of unknowns.
public void setSystem(int[][]); — sets matrix of coefficients.
public void setUnknowns(int[]); — sets left part of ANLDE system.
public void setNames(String[]); — sets list of unknowns names.

Class ANLDESystemSet

Description: class for storing a set of ANLDE systems.

Fields:
private java.util List list; — list of ANLDE objects

Constructors:
ANLDESystemSet(); — storing a set of ANLDE systems

Methods:
public int getS(); — returns number of systems.
public java.util List getList(); — returns set of ANLDE systems.
public void setlList(java.util.List); — sets ANLDE systems set.

Class ANLDEParser

Class ANLDEParser is used by web server to translate single ANLDE systems and ANLDE
system sets from traditional mathematical style to internal format. Public member ANLDERequest
parseANLDE(String source, boolean set, Limits limits) is used to translate ANLDE system (if set
is false) or ANLDE system set (if set is true) to the internal format (instance of ANLDERequest
class) from given source string according to limits specified. ANLDEFormatException is thrown
in case of parsing error or when the ANLDE system doesn’t conform to the limits.

16

Class ANLDEFormatException

ANLDEFormatException is thrown by ANLDEParser.parseANLDE() when it fails to parse
ANLDE system (set). Public member getMessage() is used to get error description and public
method getlLine() is used to get line of text where error is found.

3 Session management

3.1 Session concept

One of the main concept of the Web-SynDic system is session. There are two types of sessions:
a physical server session and a logical Web-SynDic session. Web-SynDic session stores all
information about current work in the system, for example ANLDE systems, user profile etc.
Web-SynDic session is a continuous time period of user’s working with the Web-SynDic. Further
we will use term “session” instead of “Web-SynDic session”.

Session is established when any user (regular on registered) start to use the system. It is
open while a user logs out or closes the connection. If a user logs out, then the session is closed
at once, but if a user closes the connection, for example closes the browser window, the session
is still alive for a some period of time (default is 15 min and configured by Jakarta Tomcat
server).

If a user has established a session and does not use the system with a large time period the
session will be terminated automatically. For using the web-system a user should establish a
session again.

Each session has own identifier on the server side. A new identifier of session is generated
whenever the session has been established.

If cookies are enabled in user’s browser, then the identifier of server session is passed by
cookies. If they are disabled the session identifier is passed by the URL string in a browser
window.

3.2 Classes

Session processing entity includes one class SessionManager. At the implementation phase, this
class will be coded as a part of web server.

Class SessionManager
Class SessionManager is used to store user profile, limits, statistics and last solved ANLDE
system information. It is shown in Fig. 8.

Fields:
private HttpSession hp; — instance of HttpSession object.

Constructors:
SessionManager(HttpSession hp); — creates a new SessionManager object corresponding to
existing http session.

17

Management

ANLDE

Limits

Statistics

UserProfile

Figure 8: Class SessionManager

Methods:
public void login(String nickname, String password); — binds attributes of registered user
to the existing session:

1. tries to get UserProfile object corresponding to nickname and password,
2. creates new instance of Statistics object;

3. binds newly created objects to the session. Old objects are unbound automatically
and notified using HttpSessionBindingListener;

4. unbinds ANLDE object.

public void logout(); — is similar to login function except that default user’s profile is used
instead of registered user’s profile.

public UserProfile getUserProfile(); — returns user profile.

public Limits getLimits(); — return user limits.

public Statistics getStatistics(); — returns statistics.

public void setANLDE(ANLDE a); — binds new ANLDE object to the session.

public ANLDE getANLDE (); — returns ANLDE object.

4 Activity statistics

Administrator has ability to view activity statistics, collected by the web system. The activity
statistics mean summarized information appropriate to selected domain and metrics for current
month. Activity statistics domain is a criterion by which statistics information is summarized.
Nickname or TP address can be selected as the domain of the report. Activity statistics metrics
define categories for statistics report. Number of sessions, total sessions time, requests for
solving, requests for generation, total system time, total work time, agreements with solutions

18

can be selected as metrics for a required report. A statistics report contains time of report
generation and statistics information appropriate to selected domain and metrics for current
month. Records in the report are sorted by domain.

4.1 Activity Domain List Format

Description: The format represents an activity domain list. There are two items in this list:
"Nickname" and "IP address". The first one corresponds to statistics by all registered users,
the second one is for statistics by all hosts.

4.2 Activity Metrics List Format

Description: The format represents an activity metrics list. The list contains the items:
Sessions is the total number of sessions.

Processed ANLDE systems is the total number of processed (input with an attempt to solve)
ANLDE systems,

Generated ANLDE systems is the total number of generated (by Web-SynDic) ANLDE systems,

Solved ANLDE systems is the total number of successfully solved (from point of view of the
anlde solver) ANLDE systems,

Acknowledged ANLDE systems is the total number of acknowledged (explicitly by user(s)) sys-
tems,

Discrepancies for solvers is the total number of ANLDE systems that are solved with a discrep-
ancy (alternative algorithm gives a different solution comparing with the anlde solver),

Sum system time is sum (for all ANLDE systems and their sets) system (from OS point of view)
time usage,

Sum work time is sum (for all ANLDE systems and their sets) work (from user point of view)
time usage,

Sum session time is sum session work time (time, used by all sessions),

4.3 Statistics Report Format

Description: The format represents a statistics report. The report is a table with 2 columns.
The first column contains items according to the selected domain (nickname or IP address).
The second column contains statistics metrics.

Sample: Statistics report during the October.

Generated at Fri Oct 31 12:22:29 MSK 2003.

19

nickname | summary used work time
guest 49.40

guest(1 10.10

guest2 50.50

guest 2 40.40

userl3 20.20

user2 111.00

user21 30.30

user3 50.50

user31 9.0

4.4 Classes

The class diagram used in activity statistics subsystem is shown in Fig. 9.

Statistics

- nickname : String
- ip : String

- gensys : int

- inputsys : int

- solvedsys : int

- acknowsys : int

- notmatch : int

- systime : float

- worktime : float

- memory : int

+ Statistics(nickname : String, ip : String)
+valueUnbound(event : HitpSessionBindingEvent) : void

StatisticsStore

Report

- domain : String
- metric : String

+ Report{domain : String, metric : String)
+ setDomain({domain : String) : void

+ getDomain(: String

+ setMetricimetric : String) : void

+ getMetricd) : String

Figure 9: Activity statistics

Class Statistics

Class Statistics (see Fig. 9) is used to transfer statistics data between ActivityStatistics and
StatisticsStore and to store statistics data in SessionManager. Methods set*, add*, and get* are
not shown on diagram.

Fields:
private String nickname; — user nickname.
private String ip; — user IP address.

20

private int gensys; — number of generated systems.

private int inputsys; — number of input systems.

private int solvedsys; — number of solved systems.

private int acknowsys; — number of acknowledged systems.

private int notmatch; — number of ANLDE systems which are discrepances solving.
private float systime; — total system time(sec).

private float worktime; — total work time(sec).

private int memory; — total memory used(Kb).

private long startSession; — start session time mark(ms).

private long endSession; — end session time mark(ms).

Constructors:
Statistics(String nickname, String ip); — constructs new Statistics object with correspond-
ing nickname and ip and sets other attributes to zero.

Methods:
public void valueUnbound(HttpSessionBindingEvent event); — this function is called when
Statistics object is unbound from session. The function extracts StatisticsStore object from
servlet context and saves statistics data.

public String getNickname(); — returns nickname.
public String getlp(); — returns ip.

public void setGeneratedSystems(int gensys); — sets number of generated systems.

public void addGeneratedSystems(int gensys); — increases number of generated systems by
gensys.

public int getGeneratedSystems(); — returns number of generated systems.

public void setlnputSystems(int inputsys); — sets number of input systems.

public void addInputSystems(int inputsys); — increases number of input systems by input-
SYs.

public int getInputSystems(); — returns number of input systems.

public void setSolvedSystems(int solvedsys); — sets number of solved systems.

public void addSolvedSystems(int solvedsys); — increases number of solved systems by
solvedsys.

public int getSolvedSystems(); — returns number of solved systems.

public void setAcknowledgedSystems(int acknowsys); — sets number of acknowledged sys-
tems.

public void addAcknowledgedSystems(int acknowsys); — increases number of acknowledged
systems by acknowsys.

21

public int getAcknowledgedSystems(); — returns number of acknowledged systems.

public void setNotMatchSystems(int notmatch); — sets number of systems with solutions,
which don’t match.

public void addNotMatchSystems(int notmatch); — increases number of systems with solu-
tions, which don’t match, by notmatch.

public int getNotMatchSystems(); — returns number of systems with solutions, which don’t
match.

public void setSystemTime(float systime); — sets system time.
public void addSystemTime(float systime); — increases system time by systime.
public float getSystemTime(); — returns system time.

public void setWorkTime(float worktime); — sets work time.
public void addWork Time(float worktime); — increases work time by worktime.
public float getWorkTime(); — returns work time.

public void setMemory(int memory); — sets memory.
public void addMemory(int memory); — increases memory by memory.
public int getMemory(); — returns memory.

public void setStartSession(long startSession); — sets start session time mark.
public long getStartSession(); — returns start session time mark.

public void setEndSession(long endSession); — sets end session time mark.
public long getEndSession(); — returns end session time mark.

Class Report

Class Report (see Fig. 9) is used to transfer processed statistics data (report data) from

ActivityStatistics to statisticsreport.jsp.

Fields:

private String domain; — requested domain.
private String metric; — requested metric.

Constructors:

Report(String domain, String metric); — constructs new Report object with corresponding
domain and metric attributes.

Methods:

public void setDomain(String domain); — sets domain.

22

public String getDomain(); — returns domain.
public void setMetric(String domain); — sets metric.
public String getMetric(); — returns metric.

Class ActivityStatistics
Class ActivityStatistics (see Fig. 9) is used to process statistics data and prepare report
according to requested domain and metric.

Fields:
StatisticsStore ss; — instance of StatisticsStore object.
public static final int NICKNAME; — specifies nickname as report domain.
public static final int IP_ ADDRESS; — specifies IP address as report domain.
public static final int GENERATED SYSTEMS; — specifies number of generated systems
as report metric.
public static final int INPUT SYSTEMS; — specifies number of input systems as report
metric.
public static final int SOLVED SYSTEMS; — specifies number of solved systems as report
metric.
public static final int ACKNOWLEDGED _SYSTEMS; — specifies number of acknowledged
systems as report metric.
public static final int DISCREPANCIES; — specifies number of ANLDE systems, which dis-
crepances solving as report metric.
public static final int USED SYSTEM TIME; — specifies summary used system time as
report metric.
public static final int USED WORK _TIME; — specifies summary used work time as report
metric.
public static final int SESSION WORK TIME; — specifies summary session work time as
report metric.
public static final int SESSIONS; — specifies number of sessions as report metric.

Constructors:
ActivityStatistics(StatisticsStore ss); — constructs new ActivityStatistics object.

Methods:
public List getStatisticsReport(int domain, int metric); — prepares statistics report according
to requested domain and metric:
1. tries to get list of Statistics objects from StatisticsStore;
2. processes list of Statistics objects using algorithm:

(a) get domain value (nickname or IP address) Statistics object (according to domain
specified);
(b) find Statistics object with the same domain value;

23

(c) add some of found Statistics object metrics values (according to metric specified)
to initial Statistics object metrics values;

(d) remove found Statistics object from the list;
(e) repeat for Statistics objects with other domain values;

3. prepares sorted list of Report objects;

4. returns list of Report objects.

Conclusion

The main results of my participation in the Web-SynDic project are:

1. Input data conversion, session management, and activity statistics subsystems are de-
signed, implemented, and tested according with international principles, practice, stan-
dards, and recommendations of SE.

2. Working version of the product is ready. Publication of the Web-SynDic project will be
finished in September 2004.

3. The experience in software engineering standards and technology is gained.

The Web-SynDic project was awarded the first place at the conference of Microsoft tech-
nologies in theory and practice ([11]). Separate parts of the project were presented at the 56
scientific student conference of Petrozavodsk State University ([12], [13]) and won first and
second places.

The Web-SynDic was the training project before the joint distributed (via Internet) SE
project with University of Helsinki students. This distributed project named DaCoPAn was
started at January 2004 and will be finished in May 2004.

A Collection of the User Requirements

The collection is based on the User Requirements v. 1.20 of the Maintenance Document.

A.1 Functions of the web system
Fla: Processing a test ANLDE system

The web system must solve a test ANLDE system and show to a user the report on
solution. A test ANLDE system is given manually by a user or generated automatically
by a generator (user choice). Only homogeneous ANLDE are used as test ones for this
project.

F1b: Format of a report on solution (test ANLDE system)

For the case of Req. Fla a report on solution must include:

1. Test ANLDE system.

24

2. Solutions of the ANLDE system (Hilbert basis or a particular solution).

3. Metrics of the resource consumption by the syntactic algorithm (time and memory
usage estimates). Concrete metrics will be defined at the design phase.

4. Comparative metrics for the alternative algorithms (slopes, Ip__solver). The metrics
are the same as for the syntactic algorithms.

5. Key hardware characteristics of the algorithm server.

F2a: Processing an ANLDE systems set

The web system must solve a set of test ANLDE systems (ANLDE systems set). An
ANLDE systems set is given by a user (TXT file) or generated automatically by the web
system using a generator (user choice).

F2b: Format of a report on solution (ANLDE systems set)

For the case of Req. F2a a report on solution must include:

1. Characteristics of the input set of ANLDE systems. Concrete metrics will be defined
at the design phase.

2. Metrics of the resource consumption by the syntactic algorithm (time and memory
usage estimates). Concrete metrics will be defined at the design phase.

3. Comparative metrics for the alternative algorithms (see references for these algo-
rithms in Req. F1b). The metrics are the same as for the syntactic algorithms.

4. Key hardware characteristics of the server. The format is the same as for Req. F1b.

F3: User notes

The web system must allow a user to send her/his opinion on the solution result (as a
note). A special case is user’s explicit agreement/disagreement with the found solution
of the processed test ANLDE system (testing of the syntactic algorithms). The test
ANLDE system may be included to the opinion (user choice). Notes are sent to the
system administrator. Noting is a type of user activity; it must be used for activity
statistics (see Req. F5 and F6). Simple TXT format is used for notes but Req. AU1 must
be satisfied.

F4: User registration

The web system must register a user when she/he wishes. A registered user has a unique
identifier (nick name) and a password. A registered user may log in to the web system
and may use additional features (see Req. AS5).

F5: Activity statistics of registered users

The web system must compute activity statistics of registered users. The activity includes:
1) login, 2) requests for solving, 3) noting, 4) successful /unsuccessful solving, 5) resource
usage, and 6) ANLDE generating. This function is available for system administrator
only.

25

F6: Activity statistics of regular users

The web system must compute activity statistics of all users (regular users). These users
are identified by their IP-addresses. The activity includes: 1) visits, 2) requests for
solving, 3) noting, 4) successful /unsuccessful solving, 5) resource usage, and 6) ANLDE
generating. This function is available for system administrator only.

A.2 Usability

AU1: Traditional mathematical style
The traditional mathematical style must be supported for representation of ANLDE (and
possibly NLDE) systems and their solutions for a user.

AU2: Format of output for a user
Any output of the web system, available to a user, must be in simple HTML and TXT
formats.

AU3: Standard Internet browser

Standard Internet browsers (among them Netscape, Mozilla, MS-IExplorer) must be sup-
ported. This means HTML 4.01 support.

A.3 Security

AS1: Access to the external algorithms

All external algorithms (including demonstrated&tested syntactic solvers and generators)
must not be accessible to the external side. Only the outcomes of their work are available
to a user.

AS2: Regular users and sysadmin

There are two types of users: regular ones and system administrator.

AS3: Access to activity statistics

The activity statistics must not be accessible for regular users. See also Req. F5 and F6.

AS4: Default limits

For any regular user the web system must support default limits on the solution process
(maximum time, memory, absolute values of coefficients, maximum number of equations,
unknowns, size of ANLDE systems set, solutions in Hilbert basis, maximum values of
components of a basis solution).

AS5: User limits

A regular user may manage her/his own limits on the solution process; these limits must
not exceed the default ones (see Req. AS4).

26

A.4 Performance

AP1: Concurrent user sessions

The web system must serve concurrently up to 5 users (separate user sessions) without
significant reduction of the server performance.

AP2: Web server overload
The web system must not overload a base server more than 75% of the total server
workload.

AP3: Notification on the process

The web system must reply on a user action less than after 20 seconds. The reply is either
the required data, or a notification on the progress.

A.5 Deployment

AD1: No installation for a client

Client part of the web system must be available to a user via an Internet browser without
an explicit installation.

References

|1] Miguel Filgueiras M., Ana-Paula Tomds. Solving Linear Constraints on Finite Domains
through Parsing. In P. Barahona, L. Moniz Pereira, A. Porto (eds.), Proceedings of the 5th
Portuguese Conference on Artificial Intelligence, Springer-Verlag, 1991. LNAI 541, pp. 1-16.

[2] Dmitry G. Korzun. Syntactic Algorithms for Solving Nonnegative Linear Diophantine Equa-
tions and their Application for Modelling of Internet Link Workload Structure. PhD Thesis,
Department of Computer Science, University of Petrozavodsk, 2002. 185 p.

[3] Dmitry G. Korzun. Grammar-Based Algorithms for Solving Certain Classes of Nonnegative
Linear Diophantine Systems. Proceedings of Annual international Finnish Data Processing
Week at the University of Petrozavodsk (FDPW’2000): Advances in Methods of Modern
Information Technology. Vol. 3. Petrozavodsk, 2001, pp. 52-67.

[4] Schrijver A. Theory of linear and integer programming. Wiley, Chichester, 1986.

[5] Huet G. An algorithm to generate the basis of solutions to homogenous linear diophantine
equations // Information Processing Letters, 1978. Vol. 3. No. 7. PP. 144-147.

[6] Domenjoud E. Solving Systems of Linear Diophantine Equations: An Algebraic Approach.
In U. Tarlecki (ed.), Proceedings of 16th International Simposium on Mathematical Foun-
dations of Computer Science. Springer—Verlag, 1991. LNCS 520. PP. 141-150.

[7] Roger S. Pressman. Software Engineering. A Practitioner’s Approach. European adapt., 5th
ed. McGraw-Hill, 2000. 915 p. ISBN 0-07-709677-0.

27

[8] Ian Sommerville. Software Engineering. 6th ed. Addison-Wesley, 2000. ISBN 0-201-39815-X.
[9] Graig Larman. Applying UML and Patterns. Prentice Hall, 2000. ISBN 0-13-748880-7.

[10] Jim Conallen. Building Web Applications with UML. Addison-Wesley, 2000. ISBN 0-201-
61577-0.

[11] Kynakos K. A., Camo A. FO., Ananbun A. B., Kpeimmens M. A. Web-SynDic: cucme-
MG JeEMOHCMPAUUY U MECMUPOBAHUA CUHMAKCUNECKUT AA20PUMMOE PEULEHUS HEOMPULQ-
MEeNDHUT AuHetTHux duoparnmosux ypasuenut. Texunomoruu Microsoft B Teopuu u mpakTu-
Ke IIporpaMMHUpPOBaHusi. MaTepuasbl Me:KBY30BCKOI'O KOHKYpCa-KOH(MEPEHIIUU CTYIeHTOB U
Mostonpix yuerbix Cepepo-3amaaa. CI16.: za-so CIIGITY, 2004. C. 43.

[12] Kpsimens M. A. Cucmema Web-SynDic: papabomka cepsepa u unmepgdetica noavaosame-
As. MaTepuasibl 56-it HayuHOi#t cTyaeHdeckoit Kondepenrnuu [lerpry. Ilerposasomack: 13a-Bo
[TerpozaBojckoro roc. yu-Ta, 2004. (IpUHATO B MEYATh)

[13] Ananbun A. B. Cucmema Web-SynDic: paspbomka npoepammrozo 0becnewenus Ha 0CHOBe
npeuedenmos. Marepuanbl 56-if HayuHOU cTymeHdeckoit kondepenruu [lerpry. [lerposa-
Bojick: U3n-Bo Ilerposasojickoro roc. yu-ta, 2004. (IpUHATO B 11€YaTh)

28

