Saint-Petersburg Russia

Microsoft Technologies in Theory and Practice of Programming

Contest — Conference

HigH-LEVEL DESIGN DESCRIPTION

Project: WEB-SyNDic

Customer: Department of Computer Science,
Head of the Department Yury A. Bogoyavlensky

Petrozavodsk State University

Developers: Dmitry G. Korzun (senior manager, PhD)
Kirill A. Kulakov (technical manager, master student, BSc)
Andrey Y. Salo (senior student)
Andrey A. Ananin (junior student)
Mikhail A. Kryshen (junior student)

Product: Web System for Demonstrating and Testing the Syntactic
Algorithms for Solving Linear Diophantine Equations in

Nonnegative Integers

High-Level Design Description page 1 of 46

Contents

1 Introduction 3
1.1 Purpose e e e 3
1.2 References e 4
1.3 Document conventions Lo Lo 5

2 System Architecture 6
2.1 Integral high-level architecture o oL 6
2.2 Server subsystemo 8
2.3 Client Part subsystem Lo 10
2.4 Data Store subsystemo o Lo 11

3 Subsystems Collaboration 13
3.1 Work with Web-SynDic. 13
3.2 LoglIn e 16
3.3 Process an ANLDE system o 16
3.4 Process a set of ANLDE systems 21
3.5 Registerauser 26
3.6 Send user notesl 27
3.7 Manage user limitso 30
3.8 Manage default limits L 32
3.9 Getstatistics oL 34
3.10 Manage Users e e e e 36

4 Subsystems Interface 39
4.1 Browser e e e e 39
4.2 Client part e e e e 39
4.3 SETVET . . . it e e e e e e e e e 41

4.3.1 Webserver e 42
4.3.2 Session Processing oo i e 42
4.3.3 Algorithm servero 44
4.3.4 Activity statisticso 44
4.3.5 Management 45
4.4 Solvero e 45
4.5 Generator e e e e e 45
4.6 Datastore oL 46

High-Level Design Description page 2 of 46

1 Introduction

The Web-SynDic project! is a student software engineering (SE) project of the Petrozavodsk
State University (PetrSU), Department of Computer Science (CSDept).

The project is related to the research done at CSDept of PetrSU in development of a new
type of algorithms for efficient solving some classes of nonnegative linear Diophantine equations
(NLDE) by syntactic (parsing) methods [10, 11, 12]. These syntactic algorithms seem to be
promising tool for solving some classes of NLDE system; more exactly a class of NLDE system,
associated with formal grammars (ANLDE systems). For this class the syntactic algorithms
allow efficient (polynomial and pseudo-polynomial) computations comparing with the general
NLDE case when the same computational problems are NP-complete or even overNP [13].

The general goal of the project is to develop a full function web system? for visual demon-
strating and testing the syntactic algorithms via the Internet. This allows researchers to input
ANLDE systems (manually or automatically generated), search their Hilbert bases, test the cor-
rectness of the found solution, estimate the resource consumption, and compare the efficiency

with available solvers, different from syntactic.

1.1 Purpose

This document defines the developed decomposition of the Web-SynDic system into principal
subsystems. Interrelations and interface between these subsystems are stated as well.
The goal is to have a base for further, low-level design: subsystems, user interface, data mod-

els, algorithms, configuration, and installation. The objectives are in constructing a high-level

model of how to implement sufficiently the requirements, stated in the Requirement Specifica-
tion document.

The document is intended mainly for the project development team. Experts from cus-
tomer’s side may analyze this document to be sure that the requirements are going to be
implemented sufficiently and efficiently.

This specification is frozen by the end of the design phase. Any changes to the design are
described in a separate document—The Implementation Document?.

Complete, both high- and low-level design can be found in the original project document

“Design Specification” at http://zeta.cs.karelia.ru/Web-SynDic/doc/eng/design.

1The original, more detailed document set of Web-SynDic Project can be found at [1].
2The Web-SynDic Server is published at [2].
3This document can be found at http://zeta.cs.karelia.ru/Web-SynDic/doc/eng/implementation/

High-Level Design Description page 3 of 46

1.2 References

[1] Web-SynDic Project development and maintenance site.
http://zeta.cs.karelia.ru/Web-SynDic/doc/eng/ (English)
http://zeta.cs.karelia.ru/Web-SynDic/doc/rus/ (Russian)

[2] The primary Web-SynDic Server is installed at
http://zeta.cs.karelia.ru:8080/Web-SynDic/main. jsp

[3] Web-SynDic: Requirements Specification. The original version.
http://zeta.cs.karelia.ru/Web-SynDic/doc/eng/requirements/

[4] Web-SynDic: Design Specification. The original version.
http://zeta.cs.karelia.ru/Web-SynDic/doc/eng/design/

[6] Web-SynDic: Software Requirements Specification. Version for the Microsoft Conference,
March 2004.

[6] Roger S. Pressman. Software Engineering. A Practitioner’s Approach. European adapt.,
5th ed. McGraw-Hill, 2000. 915 p.

[7] Tan Sommerville. Software Engineering. 6th ed. Addison-Wesley, 2000.
[8] Graig Larman. Applying UML and Patterns. Prentice Hall, 2000.

[9] Jim Conallen. Building Web Applications with UML. Addison-Wesley, 2000.

[10] Yury A. Bogoyavlensky, Dmitry G. Korzun, Obshchiy vid resheniya sistemy lineynih dio-
phantovih uravneniy, associirovannoy s kontertno-svobodnoy grammatikoy. Trudy Petroza-
vodskogo gosudarstvennogo universiteta. Ser. “Prikladnaya matematika i informatika”.
Vol. 6. Petrozavodsk, 1998. pp. 79-94. (in Russian)

[11] Dmitry G. Korzun. Syntactic Algorithms for Solving Nonnegative Linear Diophantine
Equations and their Application for Modelling of Internet Link Workload Structure. PhD
Thesis, Department of Computer Science, University of Petrozavodsk, 2002. 185 p. (in

Russian)

[12] Dmitry G. Korzun. Grammar-Based Algorithms for Solving Certain Classes of Nonnegative
Linear Diophantine Systems. Proceedings of Annual international Finnish Data Processing
Week at the University of Petrozavodsk (FDPW’2000): Advances in Methods of Modern
Information Technology. Vol. 3. Petrozavodsk, 2001, pp. 52—67.

High-Level Design Description page 4 of 46

[13] Schrijver A. Theory of linear and integer programming. Wiley, Chichester, 1986.

[14] Domenjoud E. Solving Systems of Linear Diophantine Equations: An Algebraic Approach.

In U. Tarlecki (ed.), Proceedings of 16th International Simposium on Mathematical Foun-
dations of Computer Science. Springer—Verlag, 1991. LNCS 520. PP. 141-150.

1.3 Document conventions

In diagrams, different colors are used to emphasize roles of each problem domain object. The

convention about colors, used in models, is stated in Figure 1. The Web-SynDic area defines

Web-SynDic area

sysadmin area supplemetary objects

user area

other

Figure 1: Color convention for models

general bounds of the Web-SynDic system. The user area contains objects that user may have

access to. The sysadmin area is for activity of the system administrator. The confidential area

must not be accessible by a user (e.g. the external algorithms).

Term Description

ANLDE system| Associated with a formal grammar, NLDE system. See [10, 11].

Browser Standard Internet browser, e.g. Microsoft IE 6.0.

Client Web-SynDic—access point for a user. Available with standard Internet
browser.

CS Computer Science

CSDept Computer Science Department.
The PetrSU CSDept web-site is http://www.cs.karelia.ru

Data store Storage of users data, limits and other supplementary data for Web-SynDic.

Hilbert basis

A set of all indecomposable (minimal) solutions of a homogeneous NLDE

system.
HTTP HyperText Transmission Protocol.
Generator Executable program that implements a generating algorithm.
ILP Integer linear programming
Indecomposable| A particular solution that is not a sum of two particular solutions.
solution

High-Level Design Description

page 5 of 46

Ip_solve The non-commercial linear programming code, written in ANSI C by Michel
Berkelaar. Also it supports ILP problems. Available on
http://www.cs.sunysb.edu/"algorith/implement/lpsolve/implement.shtml

NLDE Nonnegative linear Diophantine equations, i.e. their solutions are in nonneg-

ative integers and coefficients are integer. See for example [13, 14].

Particular Any non-trivial solution of a homogenous NLDE system.

solution

PetrSU Petrozavodsk State University, http://petrsu.karelia.ru

SE Software Engineering, standard course books are [6, 7].

Server Web-SynDic server part. Performs all processing.

Slopes Algorithm of M.Filgueiras and A.-P.Tomés for searching Hilbert basis of a

homogenous NLDE system, available on

http://www.ncc.up.pt/ apt/dioph/

Solver Executable program that implements a solving algorithm.

Syntactic The algorithms that solve ANLDE system by constructing some derivations

Algorithms in the corresponding formal grammar, see [12, 11]. Web-SynDic is intended
to demonstrate and test such algorithms.

Trivial solution | All-zero solution @ = (0, ..., 0) of a homogeneous NLDE system.

UML Unified Modelling Language. See for example [8, 9.

Web-SynDic It stands for Web-based demonstrating and testing the Syntactic algo-
rithms for solving nonnegative linear Diophantine equations.

2 System Architecture

In this section the architecture of the Web-SynDic system is presented. Key subsystems are
identified, for each of them their purpose and specifics are described. The section results with
the integral UML-based model of the architecture [8, 9].

The further design of each subsystem must be strictly based on this architecture.

2.1 Integral high-level architecture

The Web-SynDic system is divided into three key subsystems (Fig. 2). Server — data processing
and coordination), Client Part — a point for user access and data visualization, and Data Store
— storage of user profiles and user activity information. The internal high-level static structure
of the subsystems is described in subsections 2.2, 2.3, and 2.4. Detailed design for collaboration

of these subsystems is in section 3.

High-Level Design Description page 6 of 46

uo1yd110so(] uSIsa(] [2A9T-YS1H

HTTP Browser
N . N
transferring data <— - — - Presentations:
_ _> - Web pages
- Web forms
]
/N
oy
]
Web-SynDic \'/ |
\VAN |
Client Part Server Data store
- N | N |
Visualization of the Functions: Information:

9y Jo), oded

problem domain objects:
- processing

- management&statistics
- user registration

- notes

- web & algorithm servers

- problem domain objects
processing

- management & control

- activity statistics

- registred user profiles
- user limits
- user activity

A\

A
I |

Vo

Generation of
test ANLDE systems

Solving
test ANLDE systems

Figure 2: Integral architecture of the Web-SynDic system

Each subsystem has its interface functions. They provide methods to access the data and
to interact with the subsystem. In this section only high-level interface functions are presented;
for the detailed interface design see section 4.

The team decided to use:

1. Thin web client technology for the software architecture according to Req. AD1.

2. Java was used as basic programming language according to Req. AD2 and AD3.

The satisfaction with AD1 is clear. Req. AD2 is satisfied because Java is cross-platform lan-
guage. In principle, the satisfaction with Req. AD3 can be easily made via existing CASE tools
for Java — J# conversion. At this moment these tools are not available for the team.
External algorithms are available as C and C++ code. The team will use cygwin package
to port them under OS Windows family and gcc compiler under Linux.
Testing of the implementation will be executed under OS Windows and Linux.

2.2 Server subsystem

The Server subsystem is divided into five modules, see Figure 3.

The Web server module is an interface service point between a user and the Web-SynDic
system. The web server receives requests and input data from a client part, converts them
from an input format to internal one, redirects the request to an appropriate subsystem. Also
it works in the reverse direction: the web server sends Web-SynDic replies and outcomes to a
user, converting the data into an appropriate output format (visualization). The Web server
generates all web forms to be used in a client part.

The Session processing module manages all established sessions, coordinates and controls
user data flows between the subsystems. In principal, this subsystem may be considered as a
part of the Web server, but in this high-level architecture it is presented as a separate module
due to its key role in the coordination.

The Algorithm server module performs processing of problem domain objects according
with the required demonstrating and testing rules. The server executes external algorithms
whenever it is required by a user during her/his session, and passes the outcome to the Session
processing module.

The Management module manages user profiles and default limits. The necessary data are
stored by the Data store subsystem. Each registered user may manage only her/his profile.
The system administrator may perform management for any user profile and for default limits.

The Activity statistics module monitors and updates the activity of each user on a session
basis stored by the Data store subsystem and computes the users activity statistics for the
system administrator. Only the system administrator may perform this function. The session

basis for data monitoring requires a synchronization with the Session processing module.

High-Level Design Description page 8 of 46

uo1yd110so(] uSIsa(] [2A9T-YS1H

9y Jo ¢ oded

Client part

- web system user interface

N

Server

\Web server

- converting user data

> - interface functions

Session processing

- storing sessions
- accumulating statistics of current session

N

AV

IAlgorithm server

- working with external algorithmg
- solving ANLDE systems
- generating ANLDE systems

N

[Management

Activity statistics

N

- storing activity statistics
- generating report of statistics

- managing users
- managing user limits
- managing default limits
- sending e-mail
to sysadmin

Data store

---- -> Storage of

user profiles
user limits

user activity data

AN

Generator

U
Solver

- Generation of

test ANLDE systems

- Solving of

test ANLDE systems

Figure 3: Architecture of the Server subsystem

2.3 Client Part subsystem

The Client part subsystem is an interface between a browser (external entity) and the Web
server subsystem. This is a starting point for a user to access available functions. This
subsystem does not require explicit implementation: standard mechanisms of a browser and
the web server are used to start the functions by a user.

Functions of the Client part are classified onto five groups according to use cases; see Figure 4

for the classification and the Requirements Specification for the use case description.

Client part: Detailed

Processing Management & statistics
- sends ANLDE system or set of N\ - manages users N\
ANLDE systems to web system - manages user limits
- sends process message to user - manages default limits
- sends report on solution to user - sends request to web system
to getting statistics report
- sends statistics report to user

Notes Registration & login
- sends general notes to server N\ - user registration N\
- sends notes on solution to server -user Log In

- user Log Out

Session

- starts session
- finishes session

Figure 4: Architecture of the Client Part subsystem

Processing supports functions for sending ANLDE systems, ANLDE system reports and mes-
sages on the processing, according with Process an ANLDE system and Process a set of ANLDE
systems use cases.

Notes supports function sendUserNotes() according with Send a note use case.

Management & statistics supports a set of functions according to Manage users, Get statistics,
Manage user limits, and Manage default limits use cases.

High-Level Design Description page 10 of 46

Registration & login supports registerUser() and loglnUser() functions according to Register
a user and Login use cases.

Session supports functions startSession() and finishSession() according to Work with Web-SynDic

use case.

Each group must be assigned to a corresponding subsystem of the web server (JSP, servlet

or java class/package), see section 3 for details.

2.4 Data Store subsystem

The Data store subsystem is divided into three modules, see Figure 5.

User profile A user profile is a set of data for registered users, e.g. nickname and password
of each user.

A user profile of the Web-system contains information about a registered user. It is stored as
a separate file with name equal to user nickname; this allows the Web-system to easily identify
and manage the user profiles. The set of these files contains full information about registered
users of the Web-system:

1. version of user profile format,

2. password,

3. email,

4. user limits,

5. short information about the user.

Special case of a user with profile is anonymous. This profile is used for any unregistered

user and may not be modified by a user.

Activity Data Activity data are a list of records. Each record corresponds to an atomic usage
of the Web system like “log in”, “ANLDE system solving”, “sending a note”, etc. A record
includes the time stamp of an atomic usage event, user ID (nickname for a registered user,
IP address for a regular user) and an activity parameter (type of user activity and particular
attributes of this activity).

High-Level Design Description page 11 of 46

uo1yd110so(] uSIsa(] [2A9T-YS1H

9F Jo g1 o8ed

==

Management

manage

register,
LogIn,
manage

1

Activity Data

Data Store
2=Yse==
> User Profile e S22
/N
<< ge=>
_I.
~ User Limits

updates,
request to get statistics report

Activity statistics

Figure 5: Detailed architecture of the Data Store

Activity data are implemented as a set of log files. Each log file is list of rows, each row is
a record with detailed information about an atomic usage of the Web-system:

1. user nickname (for registered users only),
2. TP address,

3. time stamp of session start,

4. session duration,

5. activity metrics.

It is assumed that one log file contains activity information about one fixed time period,
there is no intersection between periods of different files. The set of all log files of the Web-
SynDic system contains full activity coverage during lifetime of the Web-system. Default value
of log file period is one month.

User limits User limits are a set of numeric values to define bounds (usually, upper bounds)
on ANLDE systems representation and generating/solving processes. Any registered user has
her/his own set of user limits and they are stored in the profile of this user. A non-registered
user is anonymous user with the corresponding limits (the same for all such users).

When a user registers in the Web system, corresponding user profile is created and added to
the set of user profiles; at the beginning the user limits are just a copy of limits of anonymous
user. The profile contains all data of the user including his/her limits.

A registered user may change the user limits. User limits of a non-registered user may be
changed during a current session, but in the data store they are not changed (user limits for
anonymous user) and the changes are valid for this session only.

3 Subsystems Collaboration

3.1 Work with Web-SynDic

Working with Web-SynDic requires a user to start a session; she/he may work only within a

session. Figure 6 shows the behavior of session starting and finishing.

High-Level Design Description page 13 of 46

uo1yd110so(] uSIsa(] [2A9T-YS1H

9F Jo ¥1 a8ed

Client part

1: loginUserinick name, password)

10: closeSessiond)

—>

‘_

9: startSession{userProfile)

Web server

14: deleteSession{userProfile)
2: loginUser(nick name, password) 7: createSession{userProfile)
11: closeSession{userProfile) _’
—>

Session processin

‘_

8: startSession{userProfile)

12.1: updateStatistics{userProfile)
B: [userProfile]

Vs

3: checkUser({nick name, password)
13.1; updateUserProfile{userProfile)

Activity statistics

Management

4: getUserProfiled
\ 13.2: saveUserProfile{userProfile)

%

5: [userProfile]
12.2: updateStatistics(statistics)

Data store

Figure 6: Work with Web-SynDic Collaboration Diagram

8:

9:

. logInUser(nickName,password) sends user’s nickname and password to log In,

. logInUser(nickName,password) forwards the nickname and password to session processing (a

new session is going to be started),

. checkUser(nickName,password) sends user’s nickname and password to Management subsys-

tem for checking (registered user or not),

. getUserProfile() is a request to get the user profile from Data Store,

. [userProfile | is taken from Data store, if any. If the profile does not exist, then the corre-

sponding message is returned,

. [userProfile] is transmitted to session processing (or the message on nonexistence),

. createSession(userProfile) creates session, identified with the user nickname, or creates a ses-

sion for anonymous (non-registered) user,
startSession(userProfile) sends initial data to the web server,

startSession(userProfile) sends initial web form to the user,

10: closeSession() sends message to close the session,

11: closeSession(userProfile) sends message to close the session,

12.1: updateStatistics(userProfile) sends update statistics to Activity statistics subsystem,

12.2: updateStatistics(statistics) updates statistics in Data store,

13.1: updateUserProfile(userProfile) sends update user profile to management for the registered

user,

13.2: saveUserProfile(userProfile) saves the user profile,

14: deleteSession(userProfile) removes the current session.

This form is a main part for presentation Web-SynDic to user. It is displayed whenever a

user starts her/his web client and is closed after explicit finishing the work or implicit closing

the browser.

High-Level Design Description page 15 of 46

3.2 Log In

Log In behavior is shown in Figure 7. A user inputs her/his nickname and password. If they
are correct, then the login is successful and the user may work with Web-SynDic as a registered
one. Otherwise, the invalid login message is displayed in the “Content” part and the user may
work only as anonymous (non-registered) user.

The “Log in / status” part of the main Web-SynDic page displays the result of the user
login and user’s current status. “Log in” form is always displayed in the "Log in / status”
part during the session. For a registered user the user menu also contains access to additional

management functions.

:USER | |
_In_pftﬂlo_gr_n and password ’_L loginUser(_|_
S & Rl in"Log in" form P
Form name: Log In
Format: User information Registered:user ldggedin < sendAcknow!edgmentso [Right]
< :
lFormat: Acknowledgment 'ﬁ
Log In Wrong]
Nikname: < Not registered user T
Password: |

L

3 e
Log in | | Register —Ir :
| |
I I
Figure 7: Log In sequence diagram

3.3 Process an ANLDE system

For processing a test ANLDE system, a user may initialize four flows, see Figure 8.

High-Level Design Description page 16 of 46

uo1yd110so(] uSIsa(] [2A9T-YS1H

9F Jo .1 98ed

Client part

1: generateANLDESystem)
2: inputANLDESystem()

3: sendANLDESystem(FormatANLDE System) 1.1: generateANLDESystem{)
4: saveANLDESystems() 3.1: sendANLDESystem{ANLDESystem)
—> —— —>
Web server I Session processing |
<+ — o=
1.7: sendANLDESystem{FormatANLDESysterm) 1.6: [ANLDESystem]

2.1; [inputANLDESystemForm]

3.0: sendProcessMessage(processhessage)
3.7: sendSolverOutcomeReport{reportOnSolution)

4.1: [saveANLDESystemFarm]

3.6: [solverOutcome]
1.2: generateANLDESystem()
i 3.2: sendANLDESystem(ANLDESystemn)
1.5: [ANLDESystem]

3.5: [solverQutcome]

Algorithim server

3.3: solveANLDESystem(ANLDESystem)

1.4 [ANLDESystem]/v \‘
/ 3.4; [solverQutcome]

1.3 generateANLDESystem()

| Generator | Solver

Figure 8: Process an ANLDE system Collaboration Diagram

The first flow is for generating a test ANLDE system.

1: generateANLDESystem() sends a signal to the web server that a user requires to generate an
ANLDE system,

1.1: generateANLDESystem() forwards the request to Session processing (generation is within

session activity),
1.2: generateANLDESystem() forwards the request to the algorithm server,

1.3: generateANLDESystem() calls an appropriate generator and the generating process is
started,

1.4: [ANLDESystem | (generated system) is returned to the algorithm server,
1.5: [ANLDESystem | is transmitted to the current session,
1.6: [ANLDESystem | is sent back to the web server for producing the web form,

1.7: sendANLDESystem(ANLDESystem) sends the form with the generated ANLDE system to

the user.
The second flow for manual input user’s ANLDE system.
2: inputANLDESystem() sends request for a web form to input a test ANLDE system,

2.1: [inputANLDESystemForm | (web form for the input) is sent to the user; then she/he can
input a test ANLDE system.

The third flow is for solving a given test ANLDE system.

3: sendANLDESystem(FormatANLDESystem) sends the given ANLDE system (generated by
Web-Syndic or input by the user) in ANLDE format,

3.0: sendProcessMessage(processMessage) sends a process message,

3.1: sendANLDESystem(ANLDESystem) forwards the given ANLDE system to session process-

ing subsystem,
3.2: sendANLDESystem(ANLDESystem) forwards ANLDE System to the algorithm server,

3.3: solveANLDESystem(ANLDESystem) calls an appropriate solver and starts the solving pro-

cess,

3.4: [solverOutcome | (results of solving) is returned from solver to the algorithm server,

High-Level Design Description page 18 of 46

3.5: [solverOutcome | is sent to session processing,

3.6: [solverOutcome | is forwarded to the web server for producing the corresponding web form

(page) with the report on solution,
3.7: sendSolverOutcomeReport(reportOnSolution) visualizes the report on solution for the user.
The last flow is for saving ANLDE system locally (as a text file).
4: saveANLDESystems is a request for saving the given ANLDE system,
4.1: [saveANLDESystemForm | is a web form to a user for saving the ANLDE system.

A user chooses a feature “process an ANLDE system” using a corresponding item in the
main menu. The ”Process an ANLDE system” form will be displayed in the ”Content” part of
the main web page.

The user enters an ANLDE system manually in the text area or generate it. For generation
process the user may choose a generator (corresponding item “Generator”). If the user has not
chosen a generator, then “gauss” algorithm is used as default. If the user presses “Generate”
button, then the process message is displayed in the “Content part”; after the generation, form
“Process an ANLDE system” is reloaded with the generated ANLDE system in the text area.

Also the user can choose an alternative solving algorithm (corresponding list “Alternative
Solver”). After entering the ANLDE system, the user presses the ”Solve” button. If the
ANLDE system is incorrect, then the error message is displayed in the “Content” part. If the
set of ANLDE systems does not satisfy the user limits, then the error message is also displayed
in the ”Content” part.

If the entered ANDLE system is valid, then the process message is displayed in the “Content”
part. After solving the system, a report on solution is displayed in “Content”.

If the user presses “Save” button, then the ANLDE system is opened in a new browser
window (ANLDE system format, comments on saving will be added).

If there is an error in solving process, then the error is displayed in the report on solution.

For convenience, user limits information is shown in this form. If the user presses ”Change
limits” button, then the ”User limits” form is displayed in the ”Content” part and after sub-
mitting changes ”Process a set of ANLDE systems” form is loaded in “Content” with new user
limits.

This form corresponds to the “Process an ANLDE systems” use case, see Fig. 9.

High-Level Design Description page 19 of 46

uo1yd110so(] uSIsa(] [2A9T-YS1H

9¥ Jo (g o8ed

An user can initialize saving

of systemn in "Process ANLDE
systerm” form andfor then

solve it

Form name: process ANLDE system
Format: ANLDE system

Process an ANLDE System

System: ﬁ

1]
E]i
[¢] I |

[Generate | | Solve I | Save I

Additional solvers to compare with the ANLDE algorithm:

<nonex> i

Generator:
Default £
Limits:
<limits

information=

Change limits

:U&R

|
L [Generator] Initialize generating

[Manual] Manual input

>

12
Send request on solve >
T~ nitialize saving of system >

|
L

Weh-SynDic

Send request on generating

Q

_GENERATOR

GenerateANLDESystem{)

GenerateANLDESystem{)

’l

Send"Process ANLDE
system"” form with
generated system

H

Run GENERATOR

Send system

inputANLDESystern(» sendANLDESystem(
sendProcessMessage])
sendANLDESystemReport() solveANLDESystem
Format: solution ANLDE
Send request on save ’I systern
saveANLDESystems()
L
L |

Figure 9: Process an ANLDE System sequence diagram

3.4 Process a set of ANLDE systems

For processing a set of test ANLDE systems, a user may initialize four flows, see Figure 10.

The first flow is for generating such a set.

1: generateANLDESystemSet() sends a signal to the web server that a user requires to generate
a set of test ANLDE systems,

1.1, 1.2: generateANLDESystemSet() sends/forwards the request to the algorithm server,

1.3: generateANLDESystemSet() calls an appropriate generator and starts the generating pro-
cess,

1.4: [ANLDESystemSet | is a required generated set of ANLDE systems,
1.5: [ANLDESystemSet | is forwarded to the session,
1.6: [ANLDESystemSet | is returned to the web server,

1.7: sendANLDESystemSet(ANLDESystemSet) sends the form with the set of ANLDE systems
to the user.

The second flow is for loading a set of ANLDE systems from user’s file.
2: loadANLDESystem() sends request to getting a web form for loading a set of ANLDE systems,

2.1: [inputANLDESystemForm | (the web form) is sent to the user for loading a set of ANLDE
systems.

High-Level Design Description page 21 of 46

uo1yd110so(] uSIsa(] [2A9T-YS1H

9F Jo gg o8ed

Client part

1: generateANLDESystemSet()
2: loadANLDESystems()

3: sendANLDESystemSet(FormatANLDESystemSet) 1.1: generateANLDESysternSet()
4: saveANLDESystems() 3.1: sendANLDESystemSet(ANLDESystemSet)

o —_ —»

Web server ‘i Session processing |

— = -
1.7: sendANLDESystemSet{FormatANLDESystemSet) 1.6 [ANLDESystemSet]
2.1: [loadANLDESystemFileForm] 3.6: [solverOutcome]
3.0: sendProcessMessage(processMessage) i 1.2: generateANLDESystemSet()
3.7: sendSolverOutcomeSetReportireportOnSolution) T 3.2: sendANLDESystemSet{ANLDESystemSet)
4.1: [saveANLDESystemSetForm] 1.5: [ANLDESystemSet]

3.5 [solverOutcome]

Algorithm server
3.3: solveANLDESystemSet(ANLDESystemSef)

1.4: [ANLDESystemSet]/v

rg

1.3: generateANLDESystemSet()

3.4; [solverQutcome]

Generatar

Figure 10: Process a set of ANLDE systems Collaboration Diagram

The third flow is for solving a set of ANLDE systems.

3: sendANLDESystemSet(FormatANLDESystemSet) sends a given set of ANLDE systems in
ANLDE format to,

3.0: sendProcessMessage(processMessage) sends a process message (about solving process),

3.1: sendANLDESystemSet(ANLDESystemSet) sends a given set of ANLDE systems to the web

server,
3.2: sendANLDESystemSet(ANLDESystemSet) forwards the set to the algorithm server,

3.3: sendANLDESystemSet(ANLDESystemSet) calls an appropriate solver and starts the solving
process,

3.4: [solverOutcome | (solution result) is returned by the solver to the algorithm server,
3.5: [solverOutcome | is processed and sent into the current session,
3.6: [solverOutcome | is processed and sent to the web server,

3.7: sendSolverOutcomeSetReport(reportOnSolution) produces a report on solution and sends th
corresponding form to the user.

The last flow is for saving ANLDE system.
4: saveANLDESystems() is a request for saving a given set of ANLDE systems,

4.1: [saveANLDESystemForm | (the form for saving) is produced and sent by the web server to

user.

A user chooses processing a set of ANLDE systems using the corresponding item in the
main menu. The “Process a set of ANLDE systems” is displayed in the “Content” part of the
main web page.

The first possibility for user is to input a set of ANLDE systems. The set may be loaded
from file. The user chooses “Load set from a text file and solve” item in the form. Then the user
presses the “Browse...” button and chooses the file. Also the user can choose an alternative
solving algorithm (corresponding item in the list “Alternative Solver”).

The second possibility is to generate a set of ANLDE systems. The user chooses “Generate
new set” item. Also the user can choose a generator (corresponding item in the “Generator”).
If the user does not choose a generator, then “gauss” algorithm is used by default. After
the generation, the user can choose solve and/or save a set of ANLDE systems by selecting
corresponding check boxes.

High-Level Design Description page 23 of 46

For processing a set of ANLDE systems, a user should press the “Process” button. The
process message will be displayed in the “Content” part. Then the web system checks the given
set of ANLDE systems. If the set is incorrect, then an error message is displayed in “Content”.
If the set does not satisfy user limits, then an error message is also displayed in “Content”.

If “Save” item was selected, then after generating ANLDE systems the set is opened in a
new browser window (ANLDE system set format, comments on saving will be added). If no
check box is selected, then an error message is displayed in the “Content” part.

If the set of ANLDE systems is valid, then the report on solution is displayed in the “Con-
tent” part after processing. If there was an error in the solving process, then the error is
displayed in the report on solution.

For convenience, user limits information is shown in this form too. If the user presses
“Change limits” button, then the “User limits” form is displayed in the ”Content” part and,
after submitting changes ”Process a set of ANLDE systems” form, is loaded in the ” Content”
part with new user limits.

This form corresponds to the ”Process a set of ANLDE systems” use case, see Fig. 11

High-Level Design Description page 24 of 46

uo1yd110so(] uSIsa(] [2A9T-YS1H

9F Jo ¢g o8ed

An user should choose one ofthis
casesin "Process setof ANLDE
systermn” form.

Form name: process set of ANLDE
systems
Format: ANLDE system set

An user can choose one or

hoth of this cases in"Process set of
ANLDE system” form and then heishe
initializes processing of set of ANLDE
systems. An user can save only a
generated set of ANLDE systems

Process a Set of ANLDE Systems

O Load set from a text file and solve

1 Browse...

@ Generate a new set
Solve the generated set
[] save the generated set

Generator: | Default v

Additional solvers to compare with the ANLDE algorithm:

<none> 7

Limits:
<limits
information>

Change limits

[Generator] |nitialize generating

Browser

~ JFile] Initialize a choosing of file

>

Send request on solve

~._ Initialize saving of systerns

Web-Syn Q
| - GENERATOR
Send request on'generating P GenerateANLDESystemSet0

GenerateANLDESystemSet()

Send request on file

A 4
F———I

Run GENERATOR

Send systems

_SOLVER

Send a choose file dialog
inpiAhEDESYSIeMO > sendANLDESystemSet)
sendProcessMessage()
solve ANLDESystemSet()

sendANLDESystemSetReport()

system set

T Format: solution ANLDE ‘j

Send request on save LJ
e

saveANLDESystems()
T

Figure 11: Process a Set of ANLDE Systems sequence diagram

3.5 Register a user

The web system allows a non-registered user to register when she/he wishes. The registration

process has the following behavior, see Figure 12.

1 :registerUser{userProfile) 2:registerUser(UserFrofile)

> —>
Client Part Web Server Session processing
<4+ <+
8: sendAcknowledgements{Acknowledgment) 7: [Acknowledgment]
L 3. registerUser{userProfile)
B: [Acknowledgment] T
5: [Acknowledgment]
—>
Data Store Management
<

4 : addUserProfile{userProfile)
Figure 12: Register a user Collaboration Diagram

1: registerUser(userProfile) , a user sends a request on registration to the web server;
2: registerUser(userProfile) sends the request to the session processing;

3: registerUser(userProfile) forwards the request to the management;

4: addUserProfile(userProfile) adds a new user profile to data store;

5: [Acknowledgement| returns the acknowledgment to management;

6: [Acknowledgement] forwards the acknowledgment to session processing;

7: [Acknowledgement] sends the acknowledgment to the web server;

8: sendAcknowledgments(acknowledgment) sends a web form with the acknowledgment to the

user;

A wuser initializes the registration by selecting the corresponding item in “Log In” form.
Then the ”Registration” form is displayed in the ”Content” part. The user fills the required
fields and, perhaps, the optional fields and presses the ”Register” button. If there are invalid
values the "registration” form will be reloaded in the ”Content” part and the error is indicated.
If the values are correct, then the acknowledgment message is displayed in the ” Content” part.

This form corresponds to the ”Register a user” use case, see Figure 13

High-Level Design Description page 26 of 46

Form name: Registration
Format: User information

|
|
|
- USER | | |
|
- . . |
Initialize registration >_L Send request on form "Registration” .l
Send "Registration” form
<
Registration Fill the form {Nickname, passwaord,...) N
Send form with filled fields .
Enllnarmea - By registerUser()
E-mall;
* Nick name:
~Rasaword; | sendAcknowledgments(
* Re-enter password: | ‘ :
Information |
; 1 5
Abottyourast; B Farmat: Acknowledgrment |
k2]
* - required field N |
T !

Figure 13: Register a User sequence diagram

3.6 Send user notes

The web system allows a user to send her/his opinion on the solution result or about the web

system as a whole. The process of sending notes behaves as follows, see Figure 14.

1.1: sendUserNotes(note) , a user sends a note to the web server;

1.2: sendUserNote{note)
1.1: sendUserNote{note)

—> — "
ClientPart —\ieb Server Session processing
<« <
1.8: sendAcknowledgments{Acknowledgment) 1.7: [Acknowledgement]

1.6 [Acknowledgment] T bﬁi sendUserNote(note, user data)

Data Store Management
<+

1.5: updateStatistics()

—>

1.4: sendAdminMessageinote)

Figure 14: Send user notes Collaboration Diagram

High-Level Design Description page 27 of 46

1.2: sendUserNotes(note) forwards the note to session processing;
1.3: sendUserNotes(note) forwards the note to management;

1.4: sendAdminMessage(note, user data) sends a message with the note and extra user’s data to

the system administrator (by email);
1.5: updateStatistics() updates statistics in data store (a note is sent);
1.6: [Acknowledgment] returns the acknowledgment to session processing;
1.7: [Acknowledgment] returns acknowledgment to the web server;

1.8: sendAcknowledgments(Acknowledgment) the web server produces the web form with the

acknowledgment and sends it to the user.

There are two types of notes: general notes (about Web-SynDic as a whole system) and a
note on the outcome solution.

A general note. If a user chooses corresponding item in the main menu, then “General

notes” form is displayed in the ” Content” part. The user writes a note and presses ”Send note”
button. If length of the note is more than 4096 symbols, then the error message is displayed
in the ”Content” part. If not, then the acknowledgment message is displayed in the ” Content”
part.

A note on solution. If a user has processed a test ANLDE system or a set of them, the

”Notes on solution” form is displayed in the report on solution. The user may choose only one
of two types for a note: agree with the solution or disagree with the solution.

In the case of agreement, the user can attach processed ANLDE system by selecting corre-
sponding check box. By default the ANLDE system is not attached.

In the case of disagreement, the processed ANLDE system is always attached to the note.
The user enters a note and presses "Send note” button. If length of the note is more than
4096 symbols, then the error message is displayed in the ”Content” part. If not, then the
acknowledgment message is displayed in the ” Content” part.

This form corresponds to the ”Send a note” use case, see Fig. 15.

High-Level Design Description page 28 of 46

=~ - |Form name: General

Format: Note

Form name: Notes on
solution
Format: Note

% Browser Wieh-SynDic
: USER : :
1 [Note about the YWeh system] ’J. Send request on note ’J_
Send "General notes" form for message
T notes
[Note with the processed ANLDE system] > Send requeston note ’Jl_
Send "Notes on solution” farm with
ability for adding proce‘sééd‘s?s}e'rﬁ e iy L C TR
Compose message P sendUserNotes() ’_]_
< sendAcknowledgments(

]
'
]

General Notes

:

&)

Notes on Solution

ﬂ

=

(@ Agree with solution ([] Attach processed system)

O Disagree (the system will be attached to

your message)

Format: Acknowledgment I5|

-

Figure 15: Send a Note sequence diagram

High-Level Design Description

page 29 of 46

3.7 Manage user limits

For management of her/his limits on generation and solution processes, a user may initialize

two flows, see Fig. 16.

2.1. manageUserLimits{params) 2.2: manageUserLimits{params)
—Pp —p 2.6: changeSessionLimits{limits)
1.1: getUserLimits(1.2. getUserLimits{ —r
—> —> | |
Client Part YWeh Server Session processing
“— <+
1.8: [user, default limits] 1.7: [user, default limits]
<« <+
2.8: sendAcknowledgments() 2.7 [acknowledgment]
¢1 .3: getDefaultLimits(
1.6: [default limits] T
l2.3: managelUserLimits{params)
1.5: [default limits] 2.5 [limits] T
—>
User Limits Management
4—

1.4: getDefaultLimits{

‘_

2.4: checkUserLimits(params)

Figure 16: Manage User Limits Collaboration Diagram

The first flow is a request for current limits of the user and current default system limits.
1.1: getUserLimits() requests the current limits of the user;
1.2: getUserLimits() requests the user limits from the current session;
1.3: getDefaultLimits() requests Management subsystem for default limits;
1.4: getDefaultLimits() requests default limits from “User Limits” data store module;
1.5: [default limits] returns the result to Management;
1.6: [default limits] returns the limits (user and default) to Session processing;
1.7: [user, default limits] are given to the web server;

1.8: [user, default limits] are sent in the web form to the browser.

High-Level Design Description page 30 of 46

The second one is a request of a user to change her/his user limits.
2.1: manageUserLimits(user limits) sends new values of user limits to the web server;
2.2, 2.3: manageUserLimits(user limits) forwards the user limits to Management subsystem;

2.4: checkUserLimits(user limits) checks the new user limits for correctness and compares with
current default limits;

2.5: [user limits] is forwarded for update to “session processing”;
2.6: changeSessionLimits(user limits) changes the user limits for the active session of the user;
2.7: [acknowledgment| sends the acknowledgment about the change status to the web server;

2.8: sendAcknowledgments() sends a web page with the acknowledgment on the change to the

browser.

A user initiates " User limits” form using corresponding item in the user menu. Then the
update limits form is displayed in the ”Content” part. The user changes values of the current
user limits. If the new values are correct, then acknowledgment message is displayed in the
”Content” part. If there is an invalid value, then “User limits” form will be reloaded in the
”Content” part and the error is indicated.

This form corresponds to the “Manage user limits” use case, see Fig. 17.

Form name: User limits
% Format: Limits Web-SynDic

<default imit>
Included In a report: |

:USER | ! |
|
T s P Send request on form "User limits" 1
Initialize user's limits management b
P Send "User limits" form
Change own limits b
Send form "User limits" with changes manageUserLimits)
User Limits ’
Max, time (sec): <default limit>
Max, memory (KB): | <default limit>
Max abaglia <default limit>
values of coefficients: | SEndACknDW|edgm9ntSO
Max. values of solution <defauit limit> ‘
basis components: !
Max. equations: <default limit> :
Max. unknowns: <default limit> Format: Acknowledgment ﬁ T
Max, set size: <default limit> T |
Max, solutions: <default limit>
Max. solutions to be T I |
| |
| |

Submit new values |

Figure 17: Manage User Limits sequence diagram

High-Level Design Description page 31 of 46

3.8 Manage default limits

The system administrator may initialize two flows as it is shown in Figure 18.

2.1. manageDefaultLimits{params) 2.2: manageDefaultLimits{params)
—> —>
1.1: getDefaultLimits{ 1.2. getDefaultLimits{
—> —>
Client Part \Weh Server Session processing
“— <+
1.8: [default limits] 1.7: [default limits]
<« <
2.8 sendAcknowledgments(2.7: [acknowledgment]
L1 .3: getDefaultLimits(
2.5 [acknowledgment] 1.6: [default limits] T
—p l2.3: manageDefauliLimits{params)
1.5: [default limits] 2.8 [acknowledgment] T
—>
User Limits Management
4_

1.4: getDefaultLimits ()
‘«

2.4: saveDefaultLimits{params)

Figure 18: Manage Default Limits Collaboration Diagram

The first flow is a request for current default limits in Web-SynDic.

1.1: getDefaultLimits() requests for current default limits;

1.2, 1.3: getDefaultLimits() forwards the request to Management subsystem;

1.4: getDefaultLimits() requests a list of current values for default limits in Data store;

1.5: [default limits] are returned to Management;

1.6: [default limits], 1.7: [default limits] are returned/forwarded to the web-server;

1.8: [default limits] is sent in the web form (produced by the web server) to the browser.
The second flow is a request for updating default limits for Web-SynDic.

2.1: manageDefaultLimits() sends changed default limits “params” and requests actual changes

inside the Web-system;

High-Level Design Description page 32 of 46

2.2, 2.3: manageDefaultLimits(params) forwards limits “params” to “Management”, server sub-
system;

2.4: saveDefaultLimits(params) updates default limits, and user profiles in Data store;
2.5: [acknowledgment| returns the acknowledgment about the update;

2.6, 2.7: [acknowledgment]| returns/forwards the acknowledgment to the web-server;
2.8: sendAcknowledgments() sends a page with the acknowledgment to the browser.

For updating default limits, a user has to log in as a system administrator. Item for update
of default limits is displayed in the user menu and the system administrator may choose it.
After that, the form “Default limits” is displayed with current values in the form elements.
The system administrator changes values of default limits and presses “submit new values”
button. If the new values are correct, then the acknowledgment message is displayed in the
“Content”. Otherwise, “Default limits” form will be reloaded in the “Content” part and the
error is indicated.

This form corresponds to the “Manage default limits” use case, see Fig. 19.

Format: Limits

£ ' Web-SynDic
|

(SYSTEM ADFNISTRATOR \

Form name: Default limits IT

'
il Send reguest on "Default limits" form - l
Initialize default limits management
Send "Default limits" form
Default Limits
Max. time (sec):
Max. memory (KB}
Max. absolute Change limits o)
values of coefficients:) Send form "Default limits" with changes —
! | manageDefaultLimits{)

Max. values of solution
basis components:)
Max. equations: |
e Uk Fovrt ‘ L sendAcknowledgments(
Max. set size: '|
Max. solutions: | Format: Acknowledgment ﬁ

Max. solutions to be L
included in a report: |

Submit new values T I

—_——

Figure 19: Manage Default Limits sequence diagram

High-Level Design Description page 33 of 46

3.9 Get statistics

The system administrator may initialize the only flow to request statistics with chosen metrics,
see Fig. 20.

1.1: sendRequestStatActivity(params) sends parameters “params” and requests to produce the

activity statistics report;

1.2, 1.3: requestStatisticsReport(params) calls “activity statistics”, sends parameters “params”

and forwards the request on the statistics report to Activity Statistics subsystem;

1.4: requestStatisticsReport(params) requests statistics data from Activity Data module in Data

store;
1.5: [activity data] is returned chosen data to “Activity Statistics”;
1.6: [activity report] is returned evaluated activity statistics;
1.7: [activity report] is passed to the web server;

1.8: sendStatisticsReport() sends the statistics report (as web page) on user activity to the

browser.

A user logs in as a system administrator in the ”Log In” form. Only in this case “Activity
statistics” form is available in the user menu. Then the system administrator starts “Activity
statistics” form using this item in the user menu. The “Activity statistics” form is displayed in
the “Content” part. After choosing activity domain and activity metrics, she/he presses “Get
report” button and the report is loaded to the “Content” part.

This form corresponds to the ”Get statistics” use case, see Fig. 21.

1.1: sendRequestStatActivity(params) 1.2: requestStatisticsReport{params)

—> —>
Client Part Weh Server Session processing
<+ <
1.8: sendStatisticsReport() 1.7: [activity repor]
ts: requestStatisticsReport{params)
1.6: [activity repor]
1.5: [activity data] [Hyengd T
—>
Activity Data Activity Statistics
<+

1.4: requestStatisticsReport{params)

Figure 20: Get Statistics Collaboration Diagram

High-Level Design Description page 34 of 46

_SYSTEM A§NISTRATOR

-

Initialize statistics

Form name: Activity statistics
Faormats: Activity domain list,
activity metrics list.

Activity Statistics

Domain: - [Nickname N

Metrics: ISoIved systems v|

Get report i

Select activity domain and metrics
in "Activity statistics” form

Weh-SynDic

Send request on statistics

(Activity domain, activity metrics)

sendStatisticsReport()

’J.

L
|
|
I

T
\
\

Format: Statistics report j

Figure 21: Get Statistics sequence diagram

requestStatisticsReport()

High-Level Design Description

page 35 of 46

3.10 Manage users

For user management, the system administrator may initialize two flows, see Figure 22.

2.1. manageUsers{nickname, params) 2.2: managelsers{nickname, params)

—> —>
1.1: getUserProfiletnickname) 1.2. getUserProfiletnickname) 1.3: getUserProfile(nickname)
—> —> —>
Client Part YWeh Server Session processing
e <« e
1.8: [user data] 1.7: [user data] 1.6: [user data)
<« <+
2.8: sendAcknowledgments() 2.7: [acknowledgment]
2.5 [acknowledgment]
—>
1.5: [user data) 2.6 [acknowledgment]
—> —>
User Limits User Profiles Management
<4+ <4+— 4—
2.4.1: manageUsers(nickname, params) 1 .4: getUserProfile(nickname) 2.3: manageUsersinickname, params)
4—

2.4.0: saveUserProfile(nickname, params)

Figure 22: Manage Users Collaboration Diagram

The first flow is a request for data of the user with given nickname.

1.1: getUserProfile(nickname) requests the current data of the registered user with the given

“nickname”;
1.2, 1.3: getUserProfile(nickname) forwards the request to “Management” subsystem;
1.4: getUserProfile(nickname) requests the data from “User Profile” module of Data store;
1.5: [user data] returns chosen data to “Management”;
1.6, 1.7: [user data] is returned/forwarded to the web server;
1.8: [user data] is sent as a web page to the browser.
The second flow is a request for updating the user data.

2.1: manageUsers(nickname, params) sends new data for user with “nickname” as “params”;

High-Level Design Description page 36 of 46

2.2, 2.3: manageUsers(nickname, params) forwards the user data “params” to “Management”
subsystem;

2.4.0: saveUserProfile(nickname, params) makes actual update of user profile, stored in “User
Profile” module of Data store;

2.4.1: manageUsers(nickname, params) makes additional changes of user limits (if necessary),

stored in “User Limits” module of Data store;
2.5: [acknowledgment] is returned the acknowledgment to “Management” module;
2.6: [acknowledgment], 2.7: [acknowledgment]| are returned/forwarded to the web server;
2.8: sendAcknowledgments() sends a web page with the acknowledgment to the browser.

A registered user may change only her/his own information in the “User information” form.
The system administrator may change user information for any user.

The system administrator starts this management using corresponding item in the user
menu. “Manage users” form is displayed in the “Content” part. The system administrator en-
ters a nickname and presses “Edit” button. If the nickname is correct, then “User information”
form is displayed in the “Content” part. Otherwise, “User limits” form is reloaded with the
error message in the “Content” part.

Any other user changes her/his account information in the “User information” form and
presses the “Submit new values”. If there are invalid values (for example password and re-
entering password do not match, etc.), then “User information” form is reloaded in the “Con-
tent” part and the error is indicated.

These forms correspond to the “Manage users” use case, see Fig. 23.

High-Level Design Description page 37 of 46

(slasnafeuewl

urergerp oouonbos sissn a8euepy :¢g oIndiyg

F_ WBWBPaMOUNIY JEUL0 4
1

UORULOMI 185 JeUI0 4
UOIJEULIOJUI 185 (WL LIS

(QsjusWbpa|MoUyIYaUSS

SaBUBYD YJIak LUIDS UOIELLIOMUI 1850, pUaS

SaN[EA MaU JULgns

Junoooe aroway [

| piomssed Jajus-ay

i PIOMSSEH

piomssed abueyo []

2]

Lol U |

; ‘BBl ||n4

HEW-3

<aLUBUNOIU> UOJJBLIIoU| JasSn

OB 135, LWI0) aY) pUas

g

BUWBRUYIIU U 1Sanbal puas

uonewLol S4ash afueyd

w0y s1asn afieuew, puag

JSlasn abeue, E__E uojsanbal puag

3WIBUYIIU JBSN B 18JUT

awabeuew m._\m.wa \mN__m_::_

NQUAS -G8

LRI 185 JeU0 4

d3smolg

s13sn afieue)y ;auweu w04

1

"13sh AUE 10) UDIJeLIIOI

unoaoe afueys ued lojelsiuiLpe
LIBJSAS ING "UDIJELLIOIUI UMD IBU[SIY
afiueys uea os|e Jasn 'siasnh sfeueLl
UBJ I0JRASIUILUIRE LWBISAS B AJUD JON

HP3

| sweuyoIN

HOLYHLSININGY WILSAS |

¥

siasn abeuepy

page 38 of 46

High-Level Design Description

4 Subsystems Interface

The composition model for subsystems interface is shown in Figure 24.

4.1 Browser

The browser along with HT'TP protocol has interface “IBrowser-Client”. This interface is used
by client part to get user identification, such as IP address. The interface consists of standard
HTTP functions and does not need extra installations. Interface “IBrowser-Client” consists of

the following functions:

getIPAdress() returns user IP address.

4.2 Client part

The client part has interfaces “IClient-Browser” and “IClient-Server”. “IClient-Browser” is
used to extract data from web forms and send it to server. This is a virtual interface because
all functions will be implemented in web forms or on server. Interface “IClient-Browser” consists

of following functions:

send ANLDESystemSet() sends to the server a set of ANLDE systems,

send ANLDESystem() sends to the server an ANLDE system,

generate ANLDESystem() sends a signal to generating ANLDE system,

generate ANLDESystemSet() sends a signal to generating a set of ANLDE systems,
save ANLDESystems() saves a set of ANLDE systems in traditional mathematical style,
sendUserNotes() sends a user note to the server,

sendUserProfile() sends user’s registration data: nickname, password and order information,

to server,
logInUser() sends to server user’s nickname and password to create new session,
manageUsers() sends changes in registered user profiles to server for modification,
manageUserLimits() sends new user limits to server for modification,
manageDefaultLimits() sends new default limits to server for modification,

registerUser() sends registration data to server for addition,

High-Level Design Description page 39 of 46

uo1yd110s9(] uSIsa(] [9A9-YS1

9¥ Jo Of o8ed

Browser

<<Interface>>

IBrowser-Client

IClient-Browser

getiPAdress() : void

sendANLDESystemSet() : void
sendANLDESystem() : void
generateANLDESystem() : void
generate ANLDESystemSet() : void
saveANLDESystems() : void
sendUserNotes() : void
sendUserProfile() : void
loginUser() : void
manageUsers() : void
manageUserLimits() : void
manageDefaultLimits() : void
finishSession() : void
inputANLDESystem() : void
sendRequestStatActivity() : void
getDefaultLimits() : void
getUserLimits() : void
getUserProfile() : void

Client part

<<Interface>>

<<Interface>>

IClient-Server

IServer-Client

sendANLDESystem() : void
sendANLDESystemSet() : void
sendAcknowledgments() : void
sendSolverOutcomeReport() : void
sendSolverOutcomeSetReport() : void
sendsStatisticsReport() : void
loadANLDESystemsForm() : void
startSessionForm() : void

sendANLDESystemSet() : void
sendANLDESystem() : void
generateANLDESystem() : void
generate ANLDESystemSet() : void
sendUserNotes() : void
sendUserProfile() : void
loginUser() : void

manageUsers() : void
manageUserLimits() : void
manageDefaultLimits() : void

finishSession() : void

() : void
getDefaultLimits() : void
getUserLimits() : void

getUserProfile() : void

<<Interface>>

IDataStore-Server

Data store

getUserProfile() : void
saveUserProfile() : void
requestStatisticsReport() : void
getDefaultLimits() : void
saveDefaultLimits() : void

updateStatistics() : void

getUserData() : void

<<Interface>>

<<Interface>>

S

ISolver-Server

IGenerator-Server <t -

solveANLDESystem() : void
solveANLDESystemSet() : void

generateANLDESystem() : void
generate ANLDESystemset() : void

Figure 24: Detailed subsystems interface

finishSession() sends a signal to finish session,

input ANLDESystem() calls a web form to input ANLDE system,
sendRequestStatActivity() sends a request to get statistics activity,
getDefaultLimits() gets default limits from the data store,
getUserLimits() gets user limits from the data store or from the session,
getUserProfile() gets user profile for management.

Interface “IClient-Server” is used to insert data into web forms. This is a virtual interface,
because all functions are implemented on the server. Interface “IClient-Server” consists of

following functions:

send ANLDESystem() sends ANLDE system to the browser,

send ANLDESystemSet() sends a set of ANLDE systems to the browser,
sendAcknowledgments() sends acknowledgment to browser,
sendProcessMessage() sends process message to the browser,
sendSolverOutcomeReport() sends report on solution to browser,
sendSolverOutcomeSetReport() sends report on solution to browser,
sendStatisticsReport() sends a report on statistics activity,

load ANLDESystemsForm() sends form to load a set of ANLDE systems,

startSessionForm/() sends start session form.

4.3 Server

The server has “IServer-Client” interface. This interface is used to send data to the external

algorithms or data store. Interface “IServer-Client” consists of following functions:
send ANLDESystemSet() sends a set of ANLDE systems to the solver,

send ANLDESystem() sends an ANLDE system to the solver,

generate ANLDESystem() sends a signal to generating ANLDE system,

generate ANLDESystemSet() sends a signal to generating a set of ANLDE systems,

High-Level Design Description page 41 of 46

sendUserNotes() sends user note to the data store,

sendUserProfile() saves user profile in the data store,

logInUser() checks nickname and password, and starts session,
manageUsers() sends changes in registered user profiles to the data store,
manageUserLimits() sends new user limits to the data store,
manageDefaultLimits() sends new default limits to the data store,
finishSession() finishes session and updates user activity,

sendRequestStat Activity() gets activity statistics from the data store and sends it to the

client part,
getDefaultLimits() gets default limits from the data store,
getUserLimits() gets user limits from the data store or from the session,
getUserProfile() gets user profile for management.

The composition model for server modules interface is shown in Figure 25.

4.3.1 Web server

The web server has “IWebServer-Session” interface. This interface is used for sending to a
user more than one message like process messages. Interface “IWebServer-Session” consists of

functions:
startSession() sends initialized data and main page to user,

sendProcessMessage() sends process message to user.

4.3.2 Session processing

The session processing has one interface. This interface is used for getting and forwarding user

data to others server subsystems. Interface “ISession-WebServer” consists of functions:
requestStatisticsReport() sends request for getting statistics report,
getDefaultLimits() gets default limits,

manageDefaultLimits() sends to change new default limits,

getUserLimits() gets user limits,

High-Level Design Description page 42 of 46

uo1yd110so(] uSIsa(] [2A9T-YS1H

9F Jo ¢f o8ed

Web server

<<Interface>>

IWebServer-Session

startSession() : void

sendProcessMessage() : void

[Algorithm server

<<Interface>>

ISession-WebServer

requestStstisticsReport() : void
manageDefaultLimits() : void
getDefaultLimits() : void
getUserLimits() : void
manageUserLimits() : void
getUserProfile() : void
manageUserProfile() : void
checkUser() : void
closeSession() : void
generateANLDESystem() : void
sendANLDESystem() : void
generateANLDESystemSet() : void
sendANLDESystemSet() : void
sendUserNote() : void

addUserProfile() : void

<<Interface>>

{> |AlgServer-Session

generateANLDESystem() : void
sendANLDESystem() : void
generateANLDESystemSet() : void

sendANLDESystemSet() : void

Session processing

______________ >

<<Interface>>

IStatistics-Session

RequestStatisticsReport() : void
updateStatistics() : void

<<Interface>>

getDefaultLimits() : void
manageDafaultLimits() : void
manageUserLimits() : void
getUserProfile() : void
manageUsers() : void
updateUserProfile() : void
checkUser() : void

registerUser() : void

sendUserNote() : void

Figure 25: Detailed server subsystems interface

IManagement-Session <]

Management

Activity statistics

manageUserLimits() sends new user limits,

getUserProfile() gets user profile,

addUserProfile() adds new user profile,

manageUserProfile() sends to change new user data,

checkUser() sends request to check user,

closeSession() sends request to close session,

generate ANLDESystem() sends parameters to generate ANLDE system,
generate ANLDESystemSet() sends parameters to generate a set of ANLDE systems,
send ANLDESystem() sends ANLDE system to solve,

send ANLDESystemSet() sends a set of ANLDE systems to solve,
registerUser() sends user data for addition,

sendUserNote() sends user note.

4.3.3 Algorithm server

The algorithm server has one interface. This interface is used for solving and generating ANLDE

systems. Interface “IAlgServer-Session” consists of functions:
generate ANLDESystem() sends parameters to generate and starts generating process,

generate ANLDESystemSet() sends parameters to generate a set of ANLDE systems and
starts generating process,

send ANLDESystem() sends ANLDE system to solve and starts solving process,

send ANLDESystemSet() sends a set of ANLDE systems to solve and starts solving process,

4.3.4 Activity statistics

The activity statistics has one interface. This interface is used for update statistics. Interface
“IStatistics-Session” consists of functions:

RequestStatisticsReport() sends request to get a statistics report,

updateStatistics() sends update of statistics.

High-Level Design Description page 44 of 46

4.3.5 Management

The management has one interface. This interface is used for management of users. Interface

“IManagement-Session” consists of functions:
getDefaultLimits() gets default limits,
manageDefaultLimits() sends new default limits,
manageUserLimits() sends new user limits,
getUserData() gets user profile,

manageUsers() sends updates of user profile,
updateUserProfile() sends update of user profile,
checkUser() sends request to check user,
registerUser() sends user profile to registration,

sendUserNote() sends user note.

4.4 Solver

The solver has “ISolver-Server” interface. This is an external interface and will not be imple-

mented. Interface “ISolver-Server” consists of following functions:
solve ANLDESystem() solves an ANLDE system,

solve ANLDESystemSet() solves a set of ANLDE systems.

4.5 Generator

The generator has “IGenerator-Server” interface. This is an external interface and is imple-

mented as a part of Web-SynDic. Interface “IGenerator-Server” consists of following functions:
generate ANLDESystem() generates an ANLDE system,

generate ANLDESystemSet() generates a set of ANLDE systems.

High-Level Design Description page 45 of 46

4.6 Data store

The data store has “IDataStore-Server” interface. This interface used for loading and extracting

data from the data store. Interface “IDataStore-Server” consists of following functions:
getUserProfile() gets user profile,

saveUserProfile() saves user profile,

requestStatisticsReport() gets activity statistics,

getDefaultLimits() gets default limits,

saveDefaultLimits() saves default limits,

updateStatistics() updates user activity.

High-Level Design Description page 46 of 46

