Student Software Engineering Project: Web-SynDic 1 Student Software Engineering Project: Web-SynDic 2

WEB_ SYN D 1C 2.3.2 Session processing i 13

2.3.3 Algorithmserver 14

2.3.4 Activity statistics 14

Web System for Demonstrating the Syntactic 2.35 Management. 15
Algorithms for Solving Linear Equations 3 User Interface 15

3.1 Style Convention 15

in Nonnegative Integers BT COOIS oo e e 15

. 3.1.2 Forms 16
(Nonnegative Linear Diophantine Equations) 313 Page Layout -« + o v 16
3.2 Forms 17

3.2.1 Process an ANLDE System 17

DESIGN SPECIFICATION 3.2.2 Process a Set of ANLDE Systems 18

323 Logln 19

. . . . 3.2.4 Activity Statisticso o 20

Department of Computer Science, Petrozavodsk State University, Russia 395 Default Limits 91
3.2.6 Registrationo 22

15th November 2004 3.27 User Limits 23

3.28 Manage Users 24

3.29 User Informationo 25

Contents 3.2.10 General NOtes oo oo oot 26
3.2.11 Notes on Solution 27

1 General Description 4 3.3 TO DataFormats 28
2 System Architecture 4 3.3.1 ANLDE System Format 28
2.1 Static Structure Model 5 8.3.2 ANLDE System Set Format 28
911 Server . . . 5 3.3.3 ANLDE System Solution Format 29

919 Client Part .« 6 3.3.4 ANLDE System Set Solution Format 30

913 Data Store 7 3.3.5 Alternative Solver List Format 31

9.2 Subsystems Tnterface oo 9 3.3.6 Activity Domain List Format 31
991 Browser . 9 3.3.7 Activity Metrics List Format 32

922 Client Part . . .+ o oo 10 3.3.8 Statistics Report Format oL 32

993 SErVer . . o o\ 1 3.3.9 User limits Format 33

994 SOIVEr .+ o o 12 3.3.10 User Information Format 34

995 Generator o o 19 3.3.11 Note Format. 34

996 Data store . . o o o 12 3.3.12 Acknowledgment Format 34

2.3 Server Subsystems Interface oo 12 3.3.13 Error Message Formato 35
931 Web SeIver . . .+ o 13 3.3.14 Process Message Format 35

3.4 Notes on implementation L 35

Student Software Engineering Project: Web-SynDic 3

4 Behavioral model 36
4.1 Work with Web-SynDic. 36
42 LogIn 37
4.3 Process an ANLDE system 38
4.4 Process a set of ANLDE systems 40
4.5 Registerauser 43
4.6 Send user notes Lo e 45
4.7 Manage user limits L 47
4.8 Manage default limits oL 49
4.9 Get statistics L L e 51
4.10 Manage Userst e e 52

5 Subsystems 55
5.1 Web Server 55

51.1 JSP Files e 55
5.1.2 Servlets 57
5.1.3 Exceptions 57
5.1.4 Other Classeso i i e 58
5.2 Session processing 58
5.2.1 Class SessionManager e 58
5.3 Algorithm server 60
5.3.1 Class GeneratorSpooler 61
5.3.2 Class SolverSpooler e 62
533 Class Limits 62
534 Class ANLDE e 63
5.3.5 Class ANLDESystem 64
5.3.6 Class ANLDESystemSet 65
5.3.7 Class SolverOutcome 65
5.3.8° Class ANLDECh i 66
539 Class Solution e 67
5.3.10 Class SolverMetrics oo 68
5.3.11 Class SolverProcesso 69
5.3.12 Class Server o it e e 69
5.3.13 Class Generator e e 70
5.3.14 Class Solver o e 70
5.3.15 Class GenTask e 71
5.3.16 Class SolTask e 72

5.4

Solver classes 72

Student Software Engineering Project: Web-SynDic 4
5.4.1 Class Solver-anlde extends Solver 72
5.4.2 Class Solver-slopes extends Solver 73
5.4.3 Class Solver-Ip_solver extends Solver 73
5.4.4 Class Solver-GLPK extends Solver 74

5.5 Generator classes 75
5.5.1 Class Generator-Gauss 75
5.5.2 Class Generator-Gordano 75
5.5.3 Class Generator-ExpandedGordano 76

5.6 Datastore e 76
5.6.1 Userprofilelogfile 7
5.6.2 Class UserProfileStore 78
5.6.3 Class DefaultLimitsStore 78
5.6.4 Default limitsfile oo 79
5.6.5 Statisticslogfile L oo o 79
5.6.6 Class StatisticsStore 80

5.7 Management e 80
5.71 Class UserProfile 80
5.7.2 Class Management 82

5.8 Activity statistics e 82
5.8.1 Class Statistics o e 82
582 Class Report e 86
5.8.3 Class ActivityStatistics o 87

6 Configuration and Installation 88

6.1 Deployment Directory Layout 88

6.2 Configuration 89

6.3 Source Tree 89

6.4 Building and Installingo o 90

1 General Description

This section provides an overview of the entire design document.

2 System Architecture

In this section the architecture of the Web-SynDic system is designed. Several models are
developed as design for the following key views: decomposition of Web-SynDic into subsystems,

Student Software Engineering Project: Web-SynDic 5

subsystem interfaces, and composite behavior of the subsystems.

Section 2.1 “Static Structure Model” describes the mentioned decomposition into subsys-
tems; key static relations between the subsystems are presented. Section 2.2 “Subsystem Inter-
face” states major dependences between the subsystems; high-level interface functions are listed
for each subsystem. In section 4 “Behavioral Model” the key dynamic issues of the Web-system
are designed—event-based communications between the subsystems with an appropriate time
order.

The design of each subsystem must be strictly based on this architecture.

2.1 Static Structure Model

The Web-SynDic system is divided into three principal subsystems: “Server” (data processing
and coordination), “Client Part” (a point for user access and data visualization), and “Data
Store” (storage of user profiles and user activity information). Internal high-level structure of
the subsystems and their communications are described in the next three subsections (2.1.1,
2.1.2, 2.1.3).

Each subsystem has its interface functions. They provide methods to access the data and
to interact with the subsystem. In this section the high-level interface functions are presented
only; for the detailed interface design see section 2.2.

2.1.1 Server

Subsystem “Server” can be divided into five subsystems, see Figure 1.

web system user interface

N

- generating report of statistcs

cor or data
interface functions

foom]

test ANLDE systems fest ANLDE systems

Figure 1: Detailed architecture of the server subsystem

Student Software Engineering Project: Web-SynDic 6

Subsystem “Web server” is an interface service point between a user and Web-SynDic. The
Web server receives requests and input data from a client part, converts them from input
format to internal, redirects the request to an appropriate subsystem. Also it works in the
reverse direction: the web server sends Web-SynDic replies and outcomes to a user, converting
the data into an appropriate output format (visualization). The Web server generates all web
forms to be used in a client part. The input formats are designed in section 3.3.

Subsystem “Session processing” manages all started sessions, coordinates and controls user
data flows between the subsystems. In principal, this subsystem may be considered as a part
of the Web server, but in the architecture it is presents as a separated subsystem due to its key
role in the coordination.

Subsystem “Algorithm server” performs processing of problem domain objects according
with the aimed demonstarting and testing issues. This server executes external algorithms
whenever it is required by a user during her/his session, and passes the outcome to subsystem
“Session processing”.

Subsystem “Management” manages user profiles and default limits. The necessary data are
stored by subsystem “Data store”. Each registered user may manage her/his profile only. The
system administrator may perform management for any user profile and for default limits.

Subsystem “Activity statistics” monitors and updates the activity of each user on a session
basis stored by subsystem “Data store” and computes the activity statistics for the system
administrator. Only the system administrator may perform this function. The session basis for

data moninoring requires a synchronization with susbsystem “Session processing”.

2.1.2 Client Part

Subsystem “Client part” is an interface between a browser (external entity) and subsystem
“Web server”. This is a starting point to access all functions that available to a user. This
subsystem does not require explicit implementation: standard mechanisms of a browser and a
web server are used to start the functions by a user.

Functions of the Client part are classified onto five groups according to use cases (see Figure 2
here for the classification and the Requirements Specification for the use case description).
Processing supports functions for sending ANLDE systems, ANLDE system reports and mes-
sages on the processing, according with Process an ANLDE system and Process a set of ANLDE
systems use cases.

Notes supports function sendUserNotes() according with Send a note use case.

Management & statistics supports a set of functions according to Manage users, Get statistics,
Manage user limits, and Manage default limits use cases.

Registration & login supports registerUser() and loginUser() functions according to Register
a user and Login use cases.

Student Software Engineering Project: Web-SynDic 7

Client part: Detailed |

Processing Management & statistics |
- sends ANLDE system or set of N - manages users N
ANLDE systems to web system - manages user limits
- sends process message to user - manages default limits
- sends report on solution to user - sends request to web system

to getting statistics report
- sends statistics report to user

Notes Registration & login
- sends general notes to server N - user registration N
- sends notes on solution to server - user Log In

- user Log Out

Session

- starts session
- finishes session

Figure 2: Detailed architecture of Client Part entity

Session supports functions startSession() and finishSession() according to Work with Web-SynDic
use case.

Each group must be assigned to a corresponding subsystem of the web server (JSP, sevlet
or java class/package), see section 5 for details.

2.1.3 Data Store

Subsystem “Data store” is divided into three modules, see Figure 3.

User profile User profile is a set of user profiles; it contains data of registered users, e.g.
nickname and password of each user.

A user profile of the Web-system contains information about a registered user. It is stored as
a separate file with name equal to user nickname; this allows the Web-system to easily identify
and manage the user profiles. The set of these files contains full information about registered
users of the Web-system.

Draft format of a file with user profile:
1. version of user profile format

2. password

Student Software Engineering Project: Web-SynDic 8
—
Data Stare
register, iibiaEs,
Log|]]
maor?anle requestto get statistics report
Management |__ 77 o] > User Profile <ffu_5€>_>_ Activity Data P ;
i
1
T
! | =<use=> Activity statistics
| 1
! User Limits
bsrem e e R 3
manage >

Figure 3: Detailed architecture of the Data Store

3. email

4. limits (see sect. 3.3.9)

5. short information about the user

Special case of a user with profile is anonymous. This profile is used for any unregistered

user and may not be modified by a user.

Activity Data Activity data is a list of records. Each record corresponds to an atomic usage
of the Web system like “log in”, “ANLDE system solving”, “sending a note”, etc. A record
includes time stamp, user ID (nickname for a registered user, or IP address for a regular user)
and an activity parameter (type of user activity and particular attributes of this activity).
Activity data is a set of log files. Each log file is list of rows, each row is a record and
contains detailed information about an atomic usage of the Web-system.
Draft format of row of a log file:

1. user nickname (for registered users only)
2. IP address

3. session start time stamp

4. session duration

5. activity metrics (see sect. 3.3.7)

For example of log file see sect. 5.6.5.
It is assumed that a log file contains activity information about one fixed time period, there
is no intersection between periods of different files. The set of all log files of the Web-SynDic

Student Software Engineering Project: Web-SynDic 9

system contains full activity coverage in lifetime of the Web-system. Value of log file period is
one month.

User limits User limits is a set of numeric values to define upper bounds on ANLDE systems
representation and generating/solving process (see sect. 5.6.4 and 5.6.1). Any registered user
has her/his own set of limits and they are stored in user profile. A non-registered user is
anonymous user with the corresponding limits (the same for all such users).

When user registers in the Web system, corresponding user profile is created and added to
the set of user profiles (at first time the user limits are as for anonymous user). The profile
contains all data of the user including his/her limits. A registered user may change these limits.

Limits of a non-registered user may be changed during a current session, but in the data
store they are not changed (user limits for anonumous user) and the changes are valid for this

session only.

2.2 Subsystems Interface

The composition model for subsystems interface is shown in Figure 4.

Figure 4: Detailed subsystems interface

2.2.1 Browser

The browser along with HT'TP protocol has interface “IBrowser-Client”. This interface is used
by client part to get user identification, such as IP address. The interface consists of standard
HTTP functions and does not need extra installations. For the further details see sect. 4.

Interface “IBrowser-Client” consists of the following functions:

getIPAdress() returns user IP address.

Student Software Engineering Project: Web-SynDic 10

2.2.2 Client part

The client part has interfaces “IClient-Browser” and “IClient-Server”. “IClient-Browser” is
used to extract data from web forms and send it to server. This is a virtual interface because
all functions will be implemented in web forms or on server. Interface “IClient-Browser” consists

of following functions:

sendANLDESystemSet() sends to the server a set of ANLDE systems,

send ANLDESystem() sends to the server an ANLDE system,

generate ANLDESystem() sends a signal to generating ANLDE system,

generate ANLDESystemSet() sends a signal to generating a set of ANLDE systems,
save ANLDESystems() saves a set of ANLDE systems in traditional mathematical style,
sendUserNotes() sends a user note to the server,

sendUserProfile() sends user’s registration data: nickname, password and order information,

to server,
logInUser() sends to server user’s nickname and password to create new session,
manageUsers() sends changes in registered user profiles to server for modification,
manageUserLimits() sends new user limits to server for modification,
manageDefaultLimits() sends new default limits to server for modification,
registerUser() sends registration data to server for addition,
finishSession() sends a signal to finish session,
input ANLDESystem() calls a web form to input ANLDE system,
sendRequestStatActivity() sends a request to get statistics activity,
getDefaultLimits() gets default limits from the data store,
getUserLimits() gets user limits from the data store or from the session,
getUserProfile() gets user profile for management.

Interface “IClient-Server” is used to insert data into web forms. This is a virtual interface,
because all functions are implemented on the server. Interface “IClient-Server” consists of
following functions:

Student Software Engineering Project: Web-SynDic 11

send ANLDESystem() sends ANLDE system to the browser,

send ANLDESystemSet() sends a set of ANLDE systems to the browser,
sendAcknowledgments() sends acknowledgment to browser,
sendProcessMessage() sends process message to the browser,
sendSolverOutcomeReport() sends report on solution to browser,
sendSolverOutcomeSetReport() sends report on solution to browser,
sendStatisticsReport() sends a report on statistics activity,

load ANLDESystemsForm() sends form to load a set of ANLDE systems,

startSessionForm() sends start session form.

2.2.3 Server

The server has “IServer-Client” interface. This interface is used to send data to the external
algorithms or data store. Interface “IServer-Client” consists of following functions:

send ANLDESystemSet() sends a set of ANLDE systems to the solver,
send ANLDESystem() sends an ANLDE system to the solver,

generate ANLDESystem() sends a signal to generating ANLDE system,
generate ANLDESystemSet() sends a signal to generating a set of ANLDE systerns,
sendUserNotes() sends user note to the data store,

sendUserProfile() saves user profile in the data store,

logInUser() checks nickname and password, and starts session,
manageUsers() sends changes in registered user profiles to the data store,
manageUserLimits() sends new user limits to the data store,
manageDefaultLimits() sends new default limits to the data store,
finishSession() finishes session and updates user activity,

sendRequestStatActivity() gets activity statistics from the data store and sends it to the

client part,

Student Software Engineering Project: Web-SynDic 12

getDefaultLimits() gets default limits from the data store,
getUserLimits() gets user limits from the data store or from the session,

getUserProfile() gets user profile for management.

2.2.4 Solver

The solver has “ISolver-Server” interface. This is an external interface and will not be imple-

mented. Interface “ISolver-Server” consists of following functions:
solveANLDESystem() solves an ANLDE system,

solveANLDESystemSet() solves a set of ANLDE systems.

2.2.5 Generator

The generator has “IGenerator-Server” interface. This is an external interface and is imple-

mented as a part of Web-SynDic. Interface “IGenerator-Server” consists of following functions:
generate ANLDESystem() generates an ANLDE system,

generate ANLDESystemSet() generates a set of ANLDE systerns.

2.2.6 Data store

The data store has “IDataStore-Server” interface. This interface used for loading and extracting

data from the data store. Interface “IDataStore-Server” consists of following functions:
getUserProfile() gets user profile,

saveUserProfile() saves user profile,

requestStatisticsReport() gets activity statistics,

getDefaultLimits() gets default limits,

saveDefaultLimits() saves default limits,

updateStatistics() updates user activity.

2.3 Server Subsystems Interface

The composition model for server subsystems interface is shown in Figure 5.

Student Software Engineering Project: Web-SynDic 13

<cintertace>> [activiy statsics
stsics sesson|<E =7

void imits(: void

<clnterface>> Management
| Managementsession | A_ _____

j
I
i
i
i
I
I
i
i
i
I
i
i
i
I
I
i
! getDetauttimis) -vod |
i
I
I
i
i
i
I
I
i
i
i
I
I
i
i
i
'

manageDafaulLimits() : void

manageUserLimis() : void

sendUserNote() : void

lgetUserProfie() : void
manageUsers() : void
updateUserProfie() : void

adauserprofie : void

N getDetautLimits) : void
I User
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

[checkuser() - void
registerUser) : void
void

[aigorithm server

|

generateANLDESystem() : void
SendANLDESystem(: void
generateANLDESystemSer) : void
sendANLDESystemSet) - void

Figure 5: Detailed server subsystems interface

2.3.1 Web server

The web server has “IWebServer-Session” interface. This interface is used for sending to a
user more than one message like process messages. Interface “IWebServer-Session” consists of
functions:

startSession() sends initialized data and main page to user,

sendProcessMessage() sends process message to user.

2.3.2 Session processing

The session processing has one interface. This interface is used for getting and forwarding user

data to others server subsystems. Interface “ISession-WebServer” consists of functions:
requestStatisticsReport() sends request for getting statistics report,
getDefaultLimits() gets default limits,

manageDefaultLimits() sends to change new default limits,

getUserLimits() gets user limits,

manageUserLimits() sends new user limits,

Student Software Engineering Project: Web-SynDic 14

getUserProfile() gets user profile,

addUserProfile() adds new user profile,

manageUserProfile() sends to change new user data,

checkUser() sends request to check user,

closeSession() sends request to close session,

generate ANLDESystem() sends parameters to generate ANLDE system,

generate ANLDESystemSet() sends parameters to generate a set of ANLDE systems,
send ANLDESystem() sends ANLDE system to solve,

send ANLDESystemSet() sends a set of ANLDE systems to solve,

registerUser() sends user data for addition,

sendUserNote() sends user note.

2.3.3 Algorithm server

The algorithm server has one interface. This interface is used for solving and generating ANLDE

systems. Interface “IAlgServer-Session” consists of functions:
generate ANLDESystem() sends parameters to generate and starts generating process,

generate ANLDESystemSet() sends parameters to generate a set of ANLDE systems and
starts generating process,

send ANLDESystem() sends ANLDE system to solve and starts solving process,

send ANLDESystemSet() sends a set of ANLDE systems to solve and starts solving process,

2.3.4 Activity statistics

The activity statistics has one interface. This interface is used for update statistics. Interface
“IStatistics-Session” consists of functions:

RequestStatisticsReport() sends request to get a statistics report,

updateStatistics() sends update of statistics.

Student Software Engineering Project: Web-SynDic 15

2.3.5 Management

The management has one interface. This interface is used for management of users. Interface

“IManagement-Session” consists of functions:
getDefaultLimits() gets default limits,
manageDefaultLimits() sends new default limits,
manageUserLimits() sends new user limits,
getUserData() gets user profile,

manageUsers() sends updates of user profile,
updateUserProfile() sends update of user profile,
checkUser() sends request to check user,
registerUser() sends user profile to registration,

sendUserNote() sends user note.

3 User Interface

This section describes the interface between a user and the Web-SynDic system. The key part of
the user interface specification is section “Forms” (sect. 3.2). The forms are used to exchange
data between a user and the Web system. Data formats, used in forms, are described in
section “IO Data Formats” (sect. 3.3). Also this document includes section “Style Convention”
(sect. 3.1) and section “Notes on Implementation” (sect. 3.4) to describe the corresponding
issues. The detailed description of the user interface and the related use cases can be found in

the next section “Behavioral model” (sect. 4).

3.1 Style Convention
3.1.1 Colors

Black text on a white background; blue hyperlinks; red warnings, important notes and required
field marks and gray buttons will be used for Web-SynDic web pages. Main menu, user menu
and log in/status page parts (see section 3.1.3 for Page Layout) have light gray background.

Student Software Engineering Project: Web-SynDic 16

3.1.2 Forms

Key form design principles are ease to use, functionality and simplicity of implementation. Only

standard controls (buttons, text field, text areas, check boxes and radio buttons) are used.

3.1.3 Page Layout

Each page consists of the following parts (see Fig. 6):

Header: web system’s title;

Main menu: links to the main web system functions (Req. F1-F3) and related documentation;
User menu: links to user information and limits form, administration links (Req. F5-F6);

Log in form: displayed until user logs in. It also shows user’s IP address (sect. 3.2.3 Log In
Form, Req. F4);

Log in status: current user nickname and “Log out” link and user’s IP address (displayed

after user logs in);

Content: information and forms the user is currently working with (sect. 3.2). Also content

contains brief textual description for each current form.

Header

Main
menu

User Content
menu

Log in
form / status

Figure 6: Page layout

Student Software Engineering Project: Web-SynDic 17

3.2 Forms
3.2.1 Process an ANLDE System

Description: This form allows a user to send one ANLDE system, which may be generated
or written manually, to server for solving. In this case a user can see her/his own limits on the
same form and change them, whenever she/he wants (using “Change limits” button). Limits

values are used as parameters for generating a new ANLDE system. See Fig. 7.

Process an ANLDE System

System: ﬁ

J[j
B

3| |

‘ Generate I | Solve | | Save |

Additional solvers to compare with the ANLDE algorithm:

I <none> v |
Generator:

| Defaut .|
Limits:

<limits

information= Change limits

Figure 7: Process an ANLDE System form

Components:
e text area for manual input of ANLDE system (sect. 3.3.1 ANLDE System Format),
e button “Generate”,
e button “Solve”,
e button “Save” ,

e list “Alternative solver” (sect. 3.3.5 Alternative Solver List Format),

Student Software Engineering Project: Web-SynDic

18

e button “Change limits” (sect. 3.2.7 User Limits),

e limits information (sect. 3.3.9 Limits Format).

References:

Use case: Process an ANLDE System.

Requirements: EUla.

3.2.2 Process a Set of ANLDE Systems

Description: Process form gives a user an opportunity to work with a set of ANLDE systems,

which can be generated or loaded from a file, and then send the systems to the server for solving.

A user can see her/his limits and may change them, if necessary, with a ” Change limits” button.

Limits values are used as parameters for generating ANLDE system. See Fig. 8.

Components:

Process a Set of ANLDE Systems

() Load set from a text file and solve
|| Browse...

(@ Generate a new set
Solve the generated set
[] save the generated set

Generator; [Default v

Additional solvers to compare with the ANLDE algorithm:

<nonex> v l

Process

Limits:
<limits

information> Change limits

Figure 8: Process a Set of ANLDE Systems form

Student Software Engineering Project: Web-SynDic 19

e radio button ”Load a set from a text file”,

e text field for file name (format depends on operating system, sect. 3.3.2 ANLDE System
Set Format),

e radio button “Generate a new set” (selected by default),
e check box “Solve the generated set” (checked by default),
e check box “Save generated set” (does not checked by default),
o list “Alternative solver” (sect. 3.3.5 Alternative Solver List Format),
e button “Process”,
e limits information (sect. 3.3.9 Limits Format),
e button “Change limits” (sect. 3.2.7 User Limits).
References:
Use case: Process a Set of ANLDE Systems.

Requirements: EUlb.

3.2.3 Log In

Description: Log In form allows a registered user to identify her/himself in the web-system.
A registered user enters her/his nickname and password. There is a user who has an opportunity
to Log In the web-system as a system administrator with access to the administration forms.
A 7Register” button is also available; thus using this form, a user can register her/himself
whenever she/he wants. See Fig. 9.

LogIn
Nickname: |
Password:
Log in || Register

Figure 9: Log In form

Components:

Student Software Engineering Project: Web-SynDic 20

o text field for nickname (sect. 3.3.10 User Information format),
e text field for password (sect. 3.3.10 User Information format),
e button "Log In”,
e button ”Register”.

References:

Use case: Log In.

Requirements: EU2d.

3.2.4 Activity Statistics

Description: This form is accessible only for the system administrator. It allows to select
necessary characteristics and get a report on activity statistics for the current month. Two lists
are available:

e domain: nicknames or IP addresses;

e metrics: number of generated systems, input systems, solved systems, acknowledged sys-
tems, resources, etc (sect. 3.3.7).

See Fig. 10.
Activity Statistics
Domaln: f[Nickname v |
Metrics: lSolved systems v‘
Get report
Figure 10: Activity Statistics Form
Components:

e list of activity domains (sect. 3.3.6 Activity Domain format),
o list of activity metrics (sect. 3.3.7 Activity Metrics format),

e button ”Get report”.

Student Software Engineering Project: Web-SynDic 21

References:
Use case: Get Statistics.

Requirements: EU3b.

3.2.5 Default Limits

Description: This form is accessible only for the system administrator. It allows changing
the default limits of solving ANLDE systems. The form consists of a set of text fields, where

necessary default limits are written (only nonnegative integer values). See Fig. 11.

Default Limits
Max. time (sec): \
Max. memory (KB): | \

Max. absolute ‘
values of coefficients: |

Max. values of solution ‘
basis components: L

Max. equations: []
Max. unknowns: ‘ '\
Max. set size:]
Max. solutions: ' \

Max. solutions to be ‘
included in a report: L

Submit new values |

Figure 11: Default Limits form

Components:
o text field for maximal time of solution (sect. 3.3.9 Limits format);
o text field for maximal memory used in solution (sect. 3.3.9 Limits format);

e text field for maximal value of coefficients (sect. 3.3.9 Limits format);

Student Software Engineering Project: Web-SynDic 22

o text field for maximal value of basis components in solution (sect. 3.3.9 Limits format);
o text field for maximal number of equations in ANLDE system (sect. 3.3.9 Limits format);
e text field for maximal number of unknowns in ANLDE system (sect. 3.3.9 Limits format);

o text field for maximal size of set of ANLDE systems, which are solved (sect. 3.3.9 Limits
format);

o text field for maximal number of solutions (sect. 3.3.9 Limits format);

o text field for maximal number of solutions to be included in a report (sect. 3.3.9 Limits
format);

e button ”Submit new values”.
References:
Use case: Manage Default Limits.

Requirements: EU3c.

3.2.6 Registration

Description: The form allows a user to register in the web system. In order to do it he/she
should enter his/her personal information, nickname and password; text fields that marked
with "*’ are required. Brief textual description for this form also contains restrictions on field
sizes. See Fig. 12.

Components:

e text field for nickname (sect. 3.3.10 User Information format), required;
e text field for password (sect. 3.3.10 User Information format), required;
e text field for re-entering password (sect. 3.3.10 User Information format), required;

o text field for full name (sect. 3.3.10 User Information format), the same as a nickname
by default;

e text field for e-mail (sect. 3.3.10 User Information format);
e text area for personal information (sect. 3.3.10 User Information format);
e Button "Register”.

References:

Student Software Engineering Project: Web-SynDic 23 Student Software Engineering Project: Web-SynDic 24

Registration User Limits
Full name ‘ “ Max. time (sec): \ \ <default limit>
E-mall; \ 1 Max. memory (KB): | | <default limit>

<default limit>

* Nick name: | \ Max. absolute J
‘ values of coefficients:

<

* Password:

Max. values of solution J <defailt limit>

basis components:

* Re-enter password: ‘

—r== Max. equations: \ <default limit>

Information |
about yoursel: l‘i Max. unknowns: \ ‘ <default limit>
i
m— Max. set size: <default limit>
* - required field

<default limit>

Max. solutions: ‘
Register

Max. solutions to be ‘
included in a report:

<default limit>

Figure 12: Registration form

| Submit new values]

Use case: Register a User.

Requirements: EU2a. Figure 13: User Limits form

3.9.7 User Limits o text field for maximal size of set of ANLDE systems, which are solved (sect. 3.3.9 Limits

format);
Description: The form allows a user to change her /his own limits on solving ANLDE systems.

It consists of the set of text fields, where user limits are entered. But they must not exceed the o text field for maximal number of solutions (sect. 3.3.9 Limits format);

default limits. For user’s convenience default limit corresponding to each text field for entering e text field for maximal number of solutions to be included in a report (sect. 3.3.9 Limits
limit is shown. See Fig. 13. format);
Components:

e button ”Submit new values”.

e text field for maximal time of solution (sect. 3.3.9 Limits format); Ref
eferences:

e text field for maximal memory used in solution (sect. 3.3.9 Limits format); Use case: Manage User Limits

o text field for maximal values of coefficients (sect. 3.3.9 Limits format); Requirements: EU2c.

e text field for maximal value of basis components in solution (sect. 3.3.9 Limits format);
3.2.8 Manage Users

o text field for maximal number of equations in ANLDE system (sect. 3.3.9 Limits format); Lo . . .
Description: Accessible only for a system administrator. She/He enters the nickname of a

e text field for maximal number of unknowns in ANLDE system (sect. 3.3.9 Limits format); target user and presses "Edit” button. See Fig. 14.

Student Software Engineering Project: Web-SynDic 25

Manage Users

Nickname: ‘

Edit

Figure 14: Manage Users form

Components:

text field for user’s nickname (sect. 3.3.9 User Information format),

button "Edit” (sect. 3.2.9 User Information).

References:

Use case: Manage Users.

Requirements: EU3a.

3.2.9 User Information

Description: The web system sends this form to the user. System administrator may change

this information for any user; other users may change only her/his own information. See Fig. 15.

Components:

text field for user’s nickname (sect. 3.3.10 User Information format),

text field for user’s E-mail (sect. 3.3.10 User Information format),

text area for extra user’s information (sect. 3.3.10 User Information format),
check box ”Change password” (doesn’t checked by default),

text field for user’s password (sect. 3.3.10 User Information format),

text field for re-entering password (sect. 3.3.10 User Information format),

check box ”Remove account” (doesn’t checked by default, displayed in admin form only,
regular user don’t see this check box),

button ” Submit new values”.

References:

Student Software Engineering Project: Web-SynDic

26

User Information: <nickname>

Full name: {

E-mail: ‘

Information:

W] | ||

(E3

[] change password

Password: \

Re-enter password: |

["] Remove account

| Submit new values |

Figure 15: User Information form

Use case: Manage Users.

Requirements: EU3a.

3.2.10 General Notes

Description:
See Fig. 16.

This form allows a user to send an opinion about the web-system (as whole).

General Notes

Figure 16: General Notes

Student Software Engineering Project: Web-SynDic 27

Components:
o text area for a textual note (sect. 3.3.11 Note format),
e button ”Send note”.

References:

Use case: Send a Note.

Requirements: EU2b.

3.2.11 Notes on Solution

Description: This form allows a user to send an opinion about the last processed ANLDE

system (or ANLDE systems set). The user chooses one of two possibilities:

1. Agree with solution of the processed ANLDE system (set). In this case the user may or
may not attach the ANLDE system (set) to the note.

2. Disagree with solution of the processed ANLDE system (set). In this case the processed
ANLDE system (set) is always attached to the note (automatically).

See Fig. 17.

Notes on Solution

(@ Agree with solution (["] Attach processed system)

() Disagree (the system will be attached to
your message)

Figure 17: Notes on Solution

Components:

Student Software Engineering Project: Web-SynDic 28

e text area for a textual note (sect. 3.3.11 Note format),
e radio button " Agree with solution” (selected by default),
e radio button ” Disagree”,
e check box 7 Attach solved system” (doesn’t checked by default),
e button "OK”.
References:
Use case: Send a Note.

Requirements: EU2b.

3.3 IO Data Formats

3.3.1 ANLDE System Format

Format:

Comment

x1 + x2 + ... + xK2 = cli*x1 + c12%x2 + ... + cIN*xN

x[K2+1] + x[K2+2] + ... + xK3 = c21#x1 + c22%x2 + ... + c2N*xN

x[KM+1] + x[KM+2] + ... + xN = cMixxl + cM2*x2 + ... + cMN*xN

Description: The format represents an ANLDE system. cl1, ¢12, ..., ¢IN, ¢21, ¢22, ...,
c¢MN are coefficients (optional, default value is 1). x1, x2, ..., xN are unknowns, may appear

“_»

in any order, some may be skipped. If there is no unknowns after the sign, write “0”.
Each unknown must appear in the left-hand side of some equation at most one time. Blank
and comment lines are ignored.

Sample:

Sample ANLDE system

x1 + x4 = 2¥x1 + 3%x3

x2 + x3 = x1 + 2%x2 + x3

Corresponding forms: sect. 3.2.1 Process an ANLDE System.

3.3.2 ANLDE System Set Format

Format:
<ANLDE system 1>
/)

Student Software Engineering Project: Web-SynDic 29

<ANLDE system 2>
%

<ANLDE System N>

Description: The format represents ANLDE System Set (ANLDE System 1), ..., (ANLDE
System N). Each system is in the ANLDE System Input Format (sect. 3.3.1). Blank and
comment lines are ignored. String with symbols(s) "%’ is a delimiter for ANLDE systems.
These strings may additionally contain blank symbols (’.’, *\t’) only.

Corresponding forms: sect. 3.2.2 Process a set of ANLDE systems.

3.3.3 ANLDE System Solution Format

Description: Format represents a report on solution of an ANLDE System. Each report

includes
1. Test ANLDE system (ANLDE system format, sect. 3.3.1).
2. Number of solutions (nonnegative integer).

3. Algorithm name, system time, work time, memory usage, solving result (one of the fol-
lowing: solved, limit exceeded, abnormal solver termination), see sect. 3.3.9 for the these

attributes.

4. Server hardware and software characteristics where solving algorithms work (Requirement

Specification, Configuration Requirements).

5. List of solutions found by each algorithm (depends on limit view in limits format, see
sect. 3.3.9).

Sample:

1. Test ANLDE system:

x1 + x4 = 2%x1 + 3%x3
x2 + x3 = x1 + 2%x2 + x3

Number of solutions: 1

2. Performance metrics of the algorithms:

Algorithm | System time(sec) | Work time(sec) | Memory usage(KB) | Solving result
anlde 0 0.580 2192 solved
slopes 0 1.168 2192 solved

3. Solving machine characteristics:

Student Software Engineering Project: Web-SynDic 30

e CPU: [A32, 1200 MHz;
¢ RAM: 256 MB.
e Operating system: Linux 2.4.19
e Priority(nice): 12
4. Solutions of test ANLDE system:

Ty Ty T3 T4

anlde:
MY 0 0 1 3

Ty Ty T3 T4

slopes:
P 0 0 1 3

Corresponding forms: sect. 3.2.1 Process an ANLDE System.

3.3.4 ANLDE System Set Solution Format

Description: Format represents a report on solution for a set of ANLDE systems. Each
report includes

1. Number of ANLDE systems in the set;

2. ANLDE systems metrics: minimum (positive int), average (positive real,one digit for
fractional part) and maximum (positive int) dimensions (equations and unknowns) of
test ANLDE systems; average (positive real, one digit for fractional part) and maximum
(positive int) coefficients of test ANLDE systems; minimum (nonnegative int), average
(nonnegative real, one digit for fractional part); maximum (nonnegative int) number of

solutions.

3. Algorithm metrics: algorithm name, sum system time (Limits format), sum work time
(Limits format), maximal memory usage (Limits format), solving result (one of the fol-

lowing: solved, limit exceeded, abnormal solver termination).

4. Server hardware and software characteristics (Requirement Specification, Configuration

Requirements).
Sample:
1. Number of ANLDE systems in the set: 3
2. The set characteristics:

minimum equations: 3

Student Software Engineering Project: Web-SynDic 31

average equations: 5.0
maximum equations: 7
minimum unknowns: 4

average unknowns: 7.0
maximum unknowns: 10
average coefficients: 4.2
maximum coefficients: 10
minimum number of solutions: 0
average number of solutions: 3.3

maximum number of solutions: 10

3. Algorithm metrics:

Algorithm Summary Summary Maximum Solving
name system time(sec) | work time(sec) | memory usage(KB) | result
anlde 0 0.580 2192 solved
slopes 0.23 5.172 2192 solved

4. Solving machine characteristics:

e CPU: 1A32, 1200 MHz;
e RAM: 256 MB.
e Operating system: Linux 2.4.19

e Priority(nice): 12

3.3.5 Alternative Solver List Format

Description: This is a list of available alternative solvers to compare with the ANLDE
algorithm. The List includes special “none” item to disable the comparison feature. At most

one alternative solver may be chosen.

3.3.6 Activity Domain List Format

Description: The format represents an activity domain list. There are two items in this list:
”Nickname” and ”IP address”. The first one corresponds to statistics by all registered users,
the second one is for statistics by all hosts.

Corresponding forms: sect. 3.2.4 Activity statistics.

Student Software Engineering Project: Web-SynDic 32

3.3.7 Activity Metrics List Format
Description: The format represents an activity metrics list. The list contains the items:
Sessions is the total number of sessions.

Processed ANLDE systems is the total number of processed (input with an attempt to solve)
ANLDE systems,

Generated ANLDE systems is the total number of generated (by Web-SynDic) ANLDE systems,

Solved ANLDE systems is the total number of successfully solved (from point of view of the
anlde solver) ANLDE systems,

Acknowledged ANLDE systems is the total number of acknowledged (explicitly by user(s)) sys-

tems,

Discrepancies for solvers is the total number of ANLDE systems that are solved with a discrep-
ancy (alternative algorithm gives a different solution comparing with the anlde solver),

Sum system time is sum (for all ANLDE systems and their sets) system (from OS point of view)

time usage,

Sum work time is sum (for all ANLDE systems and their sets) work (from user point of view)

time usage,
Sum session time is sum session work time (time, used by all sessions),

Corresponding forms: sect. 3.2.4 Activity Statistics.

3.3.8 Statistics Report Format

Description: The format represents a statistics report. The report is a table with 2 columns.
The first column contains items according to the selected domain (nickname or IP address).
The second column contains statistics metrics.

Sample: Statistics report during the October.

Generated at Fri Oct 31 12:22:29 MSK 2003.

Student Software Engineering Project: Web-SynDic 33

nickname | summary used work time
guest 49.40

guest01 10.10

guest2 50.50

guest_2 40.40

userl3 20.20

user2 111.00

user21 30.30

user3 50.50

user31 9.0

Corresponding forms: sect. 3.2.4 Activity Statistics.

3.3.9 User limits Format

Description: The format represents user limits. There are eight items in this format:

1.

Maximal time allowed for solving process (in seconds, positive integer, checked during a
solving process).

. Maximal memory allowed for solving process (in kilobytes, positive integer, checked during

a solving process).

. Maximal value for coefficients of ANLDE system(s) (positive integer, checked i) after

inputing the ANLDE system and ii) during generating process).

. Maximal value for any component in a basis solution (positive integer, checked during

generating and solving processes).

. Maximal number of equations in ANLDE system (positive integer, checked after inputing

the ANLDE system and during generating process).

. Maximal number of unknowns in ANLDE system (positive integer, checked after inputing

the ANLDE system and during generating process).

. Maximal size of an ANLDE systems set (positive integer, checked after inputing the set

and during generating process).

. Maximal number of basis solutions (positive integer, checked during generating and solv-

ing processes).

. Maximal number of basis solutions to be included in a report on solution (non-negative

integer, untestable because using only for output solutions to a user).

Corresponding forms: sect. 3.2.5 Default Limits, sect. 3.2.7 User Limits.

Student Software Engineering Project: Web-SynDic 34

3.3.10 User Information Format

Description: The format used for user information data. There are six items in this format.

1. Nickname consists of following characters: Latin letters, digits and '’ symbol. It is case
sensitive. Maximum length is 32 characters.

2. Password consists of following characters: Latin letters, digits and punctuation marks. It
is case sensitive. Maximum length is 32 characters.

3. Re-entering password format is the same as password format.
4. Full name is a text (text). Maximum length is 256 characters.
5. E-mail is a text (text). Maximum length is 256 characters.

6. Personal information is a text (no more than 256 characters).

Corresponding forms: sect. 3.2.6 Registration, sect. 3.2.8 Manage Users, sect. 3.2.9 User
Information.

3.3.11 Note Format

Description: The note format is a text (no longer than 4096 symbols).

Corresponding forms: sect. 3.2.10 General Notes, sect. 3.2.11 Notes on Solution.

3.3.12 Acknowledgment Format

Description: This format represents a different types of acknowledgments. The acknowledg-

ment format is a one of following types:
1. Log in acknowledgment (“You are logged in as ’nickname’.”).
2. Modification acknowledgment (“Changes have been submitted. Thank you.”).
3. Sending note acknowledgment (“Your message have been sent. Thank you.”).

4. Registration acknowledgment (“Thank you for registering.”).

Corresponding forms: sect. 3.2.3 Log In, sect. 3.2.5 Default Limits, sect. 3.2.7 User Limits,
sect. 3.2.8 Manage Users, sect. 3.2.10 General Notes, sect. 3.2.11 Notes on Solution, sect. 3.2.6

Registration.

Student Software Engineering Project: Web-SynDic 35

3.3.13 Error Message Format

Description: Format represents a different types of error messages. The error message format

is one of following types:
1. Invalid nickname or password.
2. Invalid value (also empty).
3. Too big message.
4. Invalid ANLDE system format.
5. 777 Chosen be absent.
6. Registration error.
7. The ANLDE system does not satisfy the user limits.
8. Server is already processing your task.

Corresponding forms: sect. 3.2.3 Log In, sect. 3.2.5 Default Limits, sect. 3.2.7 User Limits,
sect. 3.2.8 Manage Users, sect. 3.2.10 General Notes, sect. 3.2.11 Notes on Solution, sect. 3.2.1
Process an ANLDE System, sect. 3.2.2 Process a Set of ANLDE Systems.

3.3.14 Process Message Format

Description: The process message has to be shown to a user when ANLDE solving or
generating process takes more than 20 seconds (Req. AP3). Possible message types are:

1. Solving your ANLDE system(s). Wait, please...

2. Generating ANLDE system(s) to you. Wait, please...
Corresponding forms: sect. 3.2.1 Process an ANLDE System, sect. 3.2.1 Process a Set of
ANLDE Systems.

3.4 Notes on implementation

User interface for Web-SynDic will be implemented using Java Server Pages and Servlets tech-
nologies. Web server produces HTML 4.01 compliant pages and send them to a client (browser).
Forms will be represented using HTML 4.01 form tags

(see http://www.w3.org/TR/htm1401/interact/forms.html).

Student Software Engineering Project: Web-SynDic 36

4 Behavioral model

4.1 Work with Web-SynDic

Working with Web-SynDic requires a user to start a session; she/he may work only within a
session. Figure 18 shows the behavior of session starting and finishing.

14: deleteSession(userProfile)
1: loginUser(nick name, password)

2: loginUser(nick name, 7
10: closeSession) 11: closeSession(userProfile) —p
— — —
Client part Web server Session processing
«— — <«
9: startSession(userProfile) 8: startSession(userProfile)

12.1: updateStatistics(userProfile)
6: [userProfile]

3: checkUser(nick name, password)
13.1: updateUserProfile(userProfile)

Activity statistics

Management

4: getUserProfile()
\ 13.2: saveUserProfile(userProfile)

b

5: [userProfile]

12.2: updateStatistics (statistics)

Figure 18: Work with Web-SynDic Collaboration Diagram

1: logInUser(nickName,password) sends user’s nickname and password to log In,

2: logInUser(nickName,password) forwards the nickname and password to session processing (a

new session is going to be started),

3: checkUser(nickName,password) sends user’s nickname and password to Management subsys-
tem for checking (registered user or not),

4: getUserProfile() is a request to get the user profile from Data Store,

5: [userProfile | is taken from Data store, if any. If the profile does not exist, then the corre-
sponding message ir returned,

6: [userProfile] is transmitted to session processing (or the message on nonexistance),

7: createSession(userProfile) creates session, identified with the user nickname, or creates a ses-

sion for anonymous (nonregistered) user,

Student Software Engineering Project: Web-SynDic 37

8: startSession(userProfile) sends initial data to the web server,

9: startSession(userProfile) sends initial web form to the user,

10: closeSession() sends message to close the session,

11: closeSession(userProfile) sends message to close the session,

12.1: updateStatistics(userProfile) sends update statistics to Activity statistics subsystem,
12.2: updateStatistics(statistics) updates statistics in Data store,

13.1: updateUserProfile(userProfile) sends update user profile to management for the registered

user,
13.2: saveUserProfile(userProfile) saves the user profile,

14: deleteSession(userProfile) removes the current session.

This form is a main part for presentation Web-SynDic to user. It is displayed whenever a
user starts her/his web client and is closed after explicit finishing the work or implicit closing
the browser.

4.2 Log In

Log In behaviour is shown in Figure 19. A user inputs her/his nikname and password

SUSER | |
_ _ln‘p:n_lo_gl_n and password 1 loghUserg |
Pt i in"Log in" form
Form name: Log In
Format: User information » Registerad user lagged In o sendAcknow!edgmentso [Right]
'
Format: Acknowledgment 0
LogIn 5 [Wrong]
Nickname! <} Not user _r
Password: |
Rt

——

Figure 19: Log In

(sect. 3.3.10 User information format). If they are correct, then the login is successful and

Student Software Engineering Project: Web-SynDic 38

the user may work with Web-SynDic as a registered one. Othewise, the invalid login message is
displayed (sect. 3.3.13 Error message format, 1) in the “Content” part and the user may work
only as anonymous (nonregistered) user.

The “Log in / status” part of the main Web-SynDic page displays the result of the user
login and user’s current status. “Log in” form is always displayed in the "Log in / status”
part during the session. For a registered user the user menu also contains access to additional

management functions.

4.3 Process an ANLDE system
For processing a test ANLDE system, a user may initialize four flows, see Figure 20.

1: generateANLDESystem()
2:inputANLDESystern()

3: sendANLDESystem(FormatANLDESystem) 1.1: generateANLDESystem()
4: saveANLDESystems () 3.1: sendANLDESystern(ANLDESyster)
—> v —>
Client part Wb server | Seesion oceesii

1.7: sendANLDESystem(F ormatANLDESystem) 1.6: [ANLDESystern]
2.1: [iInputANLDE SystemF orm] 36: [solverOutcome]
3.0: sendProcesshessage(processhiessage) l 1.2: generateANLDESystem(
3.7: sendSolverOutcomeRepoart(reportonSolution) 3.2: sendANLDESystem(ANLDESystern)
4.1: [saveANLDESystemForm] L5 ALOEBR e

3.5 [solverOuteome]

Algorithm server
3.3: solveANLDESystern(ANLDESystern)
14: [ANLDESvlem]/' 2 ¥

3.4 [solverOutcome]

5

1.3: generateANLDESystern(

Generator

Figure 20: Process an ANLDE system Collaboration Diagram

The first flow is for generating a test ANLDE system.

1: generateANLDESystem() sends a signal to the web server that a user requires to generate an
ANLDE system,

1.1: generateANLDESystem() forwards the request to Session processing (generation is within
session activity),

1.2: generateANLDESystem() forwards the request to the algorithm server,

1.3: generateANLDESystem() calls an appropriate generator and the generating process is
started,

1.4: [ANLDESystem | (generated system) is returned to the algorithm server,

Student Software Engineering Project: Web-SynDic 39

1.5: [ANLDESystem | is transmitted to the current session,
1.6: [ANLDESystem | is sent back to the web server for producing the web form,

1.7: sendANLDESystem(ANLDESystem) sends the form with the generated ANLDE system to
the user.

The second flow for manual input user’s ANLDE system.
2: inputANLDESystem() sends request for a web form to input a test ANLDE system,

2.1: [inputANLDESystemForm | (web form for the input) is sent to the user; then she/he can
input a test ANLDE system.

The third flow is for solving a given test ANLDE system.

3: sendANLDESystem(FormatANLDESystem) sends the given ANLDE system (generated by
Web-Syndic or input by the user) in ANLDE format,

3.0: sendProcessMessage(processMessage) sends a process message,

3.1: sendANLDESystem(ANLDESystem) forwards the given ANLDE system to session process-

ing subsystem,
3.2: sendANLDESystem(ANLDESystem) forwards ANLDE System to the algorithm server,

3.3: solveANLDESystem(ANLDESystem) calls an appropriate solver and starts the solving pro-

cess,
3.4: [solverOutcome | (results of solving) is returned from solver to the algorithm server,
3.5: [solverOutcome] is sent to session processing,

3.6: [solverOutcome] is forwarded to the web server for producing the corresponding web form
(page) with the report on solution,

3.7: sendSolverOutcomeReport(reportOnSolution) visualizes the report on solution for the user.
The last flow is for saving ANLDE system locally (as a text file).
4: saveANLDESystems is a request for saving the given ANLDE system,

4.1: [saveANLDESystemForm] is a web form to a user for saving the ANLDE system.

Student Software Engineering Project: Web-SynDic 40

A user chooses a feature “process an ANLDE system” using a corresponding item in the
main menu. The ”Process an ANLDE system” form will be displayed in the ” Content” part of
the main web page.

The user enters an ANLDE system manually in the text area or generate it (sect. 3.3.1
ANLDE system format). For generation process the user may choose a generator (corresponding
item “Generator”). If the user has not choosen a generator, then “gauss” algorithm is used as
default. If the user presses “Generate” button, then the process message is displayed in the
“Content part” (sect. 3.3.14 Process message format, 2); after the generation, form “Process
an ANLDE system” is reloaded with the generated ANLDE system in the text area.

Also the user can choose an alternative solving algorithm (corresponding list “Alternative
Solver”). After entering the ANLDE system, the user presses the ”Solve” button. If the ANLDE
system is incorrect, then the error message is displayed in the “Content” part (sect. 3.3.13 Error
message format, 4). If the set of ANLDE systems does not satisfy the user limits, then the
error message is also displayed in the ”Content” part (sect. 3.3.13 Error message format, 7).

If the entered ANDLE system is valid, then the process message is displayed in the “Content”
part (sect. 3.3.14 Process message format). After solving the system, a report on solution is
displayed in “Content” (sect. 3.3.3 ANLDE system solution format).

If the user presses “Save” button, then the ANLDE system is opened in a new browser
window (ANLDE system format, comments on saving will be added).

If there is an error in solving process, then the error is displayed in the report on solution
(sect. 3.3.3 ANLDE system solution format).

For convenience, user limits information is shown in this form. If the user presses ” Change
limits” button, then the ”User limits” form is displayed in the ”Content” part and after sub-
mitting changes ” Process a set of ANLDE systems” form is loaded in “Content” with new user
limits.

This form corresponds to the “Process an ANLDE systems” use case. See Fig. 21.

4.4 Process a set of ANLDE systems

For processing a set of test ANLDE systems, a user may initialize four flows, see Figure 22.
The first flow is for generating such a set.

1: generateANLDESystemSet() sends a signal to the web server that a user requires to generate
a set of test ANLDE systems,

1.1, 1.2: generateANLDESystemSet() sends/forwards the request to the algorithm server,

1.3: generateANLDESystemSet() calls an appropriate generator and starts the generating pro-

cess,

Student Software Engineering Project: Web-SynDic 41

% Q O
2USER ; ! GENERATOR SOLVER
l [Generator] _ Initialize generating L ‘Sendrequeston generating L GenerateANLDESystern(| |
Run GENERATOR
L DESyetemo < Send system
Send "Process ANLDE

system” form with

|
|
|
|
|
generated system & >‘< }
|
|
|
|
|

[Manuall Manual input
An user can inifialize saving Send request on sohve inputsNLDESysterni SendANLDESystern0
of syster in"Process ANLDE =
systern" form andior then
solve it sendProcesshessage(
Form name: process ANLDE system <
Format: ANLDE system

|, sendANLD M SolveANLDESysterm()

Process an ANLDE System "~ - Initialize saving of system Ficrmarmramns
mlﬂ A saveANLDESystems(

Goete || s][smwe | .

Additional solvers to compare wih the ANLOE aigorthm: T
<none> - i

Generator

Limits
<limits
nfomations> Ghange mits
Figure 21: Process an ANLDE System
1: generateANLDESystemSet)
2:loadANLDESystems(
3: sendANLDESystemSet(FormatANLDESystemSet) 1.1: generateANLDESystemSet
4 saveANLDESystems) 3.1: sendANLDESystemSet(ANLDESysternSet)
—> —>
Client part Web server ‘Session processing
<+ = 1
+——
1.7 sendANLDESystemSet(FormatsNLDESystemSet) 1.6: IANLDESystemet]
21: [loadANLDESysternFileF orrn] 36 [sohveroutcome]
3.0: sendProcesshlessage(processessage) l 1.2: generateANLDESystemSet)
37 sendSolverO OnSolut T 3.2: sendANLDESystemnSet(ANLDESystemSet)
4.1: [saveANLDESystemgetForm 1.5: [ANLDESystemSet]
3.5 [solveroutcome]
Algorithn server
2.3: solveANLDESystemSet(ANLDESystemSet)
14 WLDESystemsel_y S
- 3.4 [solveroutcome) N

13 D

Generator

Figure 22: Process a set of ANLDE systems Collaboration Diagram

1.4: [ANLDESystemSet | is a required generated set of ANLDE systems,
1.5: [ANLDESystemSet | is forwarded to the session,

1.6: [ANLDESystemSet | is returned to the web server,

Student Software Engineering Project: Web-SynDic 42

1.7: sendANLDESystemSet(ANLDESystemSet) sends the form with the set of ANLDE systems
to the user.

The second flow is for loading a set of ANLDE systems from user’s file.
2: loadANLDESystem() sends request to getting a web form for loading a set of ANLDE systems,

2.1: [inputANLDESystemForm | (the web form) is sent to the user for loading a set of ANLDE
systems.

The third flow is for solving a set of ANLDE systems.

3: sendANLDESystemSet(FormatANLDESystemSet) sends a given set of ANLDE systems in
ANLDE format to,

3.0: sendProcessMessage(processMessage) sends a process message (about solving process),

3.1: sendANLDESystemSet(ANLDESystemSet) sends a given set of ANLDE systems to the web

server,
3.2: sendANLDESystemSet(ANLDESystemSet) forwards the set to the algorithm server,

3.3: sendANLDESystemSet(ANLDESystemSet) calls an appropriate solver and starts the solving

process,
3.4: [solverOutcome | (solution result) is returned by the solver to the algorithm server,
3.5: [solverOutcome | is processed and sent into the current session,

3.6: [solverOutcome | is processed and sent to the web server,

3.7: sendSolverOutcomeSetReport(reportOnSolution) produces a report on solution and sends th

corresponding form to the user.
The last flow is for saving ANLDE system.
4: saveANLDESystems() is a request for saving a given set of ANLDE systems,

4.1: [saveANLDESystemForm] (the form for saving) is produced and sent by the web server to

user.

A user chooses processing a set of ANLDE systems using the corresponding item in the
main menu. The “Process a set of ANLDE systems” is displayed in the “Content” part of the
main web page.

The first possibility for user is to input a set of ANLDE systems. The set may be loaded
from file. The user chooses “Load set from a text file and solve” item in the form. Then the user

Student Software Engineering Project: Web-SynDic 43

”»

presses the “Browse...” button and chooses the file. Also the user can choose an alternative
solving algorithm (corresponding item in the list “Alternative Solver”).

The second possibility is to generate a set of ANLDE systems. The user chooses “Generate
new set” item. Also the user can choose a generator (corresponding item in the “Generator”).
If the user does not choose a generator, then “gauss” algorithm is used by default. After
the generation, the user can choose solve and/or save a set of ANLDE systems by selecting
corresponding check boxes.

For processing a set of ANLDE systems, a user should press the “Process” button. The
process message will be displayed in the “Content” part (sect. 3.3.14 Process message format).
Then the web system checks the given set of ANLDE systems. If the set is incorrect, then an
error message is displayed in “Content” (sect. 3.3.13 Error message format, 4). If the set does
not satisfy user limits, then an error message is also displayed in “Content” (sect. 3.3.13 Error
message format, 7).

If save item was selected, then after generating ANLDE systems the set is opened in a new
browser window (ANLDE system set format, comments on saving will be added). If no check
box is selected, then an error message is displayed in the “Content” part (3.3.13 Error message
format, 5).

If the set of ANLDE systems is valid, then the report on solution is displayed in the “Con-
tent” part after processing (sect. 3.3.2 ANLDE system set solution format). If there was an
error in the solving process, then the error is displayed in the report on solution (sect. 3.3.4
ANLDE system set solution format).

For convenience, user limits information is shown in this form too. If the user presses
“Change limits” button, then the “User limits” form is displayed in the ”Content” part and,
after submitting changes ”Process a set of ANLDE systems” form, is loaded in the ” Content”
part with new user limits.

This form corresponds to the ”Process a set of ANLDE systems” use case, see Fig. 23

4.5 Register a user

The web system allows a non-registered user to register when she/he wishes. The registration
process has the following behaviour, see Figure 24.

1: registerUser(userProfile) , a user sends a request on registration to the web server;
2: registerUser(userProfile) sends the request to the session processing;
3: registerUser(userProfile) forwards the request to the management;

4: addUserProfile(userProfile) adds a new user profile to data store;

Student Software Engineering Project:

Web-SynDic

44

An user should choose one ofthis
casesin "Process set of ANLDE
systern” form

Form name: process set of ANLDE
syster

Format ANLDE system set

An user can choose one or
both of this cases in "Process set of

ANLDE system" form and then he/she
initializes processing of set of ANLDE
systems. An user can save onlya
generated set of ANLDE systems

Process a Set of ANLDE Systems
O Load set from a text file and soive

® Generate a new set
[7] Solve the generated set
[Save the generated sst

1 : registerUser(userProfile)

Client Part

8:

lﬁR

"~ Initialize saving of systems

Send request on save

saveANLDESystems()

Figure 23: Process a Set of ANLDE Systems

<«

2: registerUser(UserProfile)

Session processing

5: [Acknowledament]

L 3: registerUser{userProfile)
6: [Acknowledament] T

—» —
Management

Data Stare

<

4 : addUserProfile(userProfile)

Figure 24: Register a user Collaboration Diagram

5: [Acknowledgement] returns the acknowledgment to management;

6: [Acknowledgement] forwards the acknowledgment to session processing;

GENERATOR SOLVER
(Generato] _ nitialize generating o 1 Send request on generating ! o !
= |
Run GENERATOR |
. |
|, GenerateANLDESystemSeto Send systems |
|
|
U | |
[X [
| |
=4~ [File] _Initialize a choosing of fle Send requeston file ! :
|
|
» Send a choose file dialog |
|
Send request on solve R |
= InpUIANLDESysterng > SendANLD |
sendProcessMessage()
solveANLDESystemset)
¢ SenUANLDESystemSetReport)
“[[- {Format soluton ANLDE
X

Student Software Engineering Project: Web-SynDic 45

7: [Acknowledgement] sends the acknowledgment to the web server;

8: sendAcknowledgments(acknowledgment) sends a web form with the acknowledgment to the

user;

A user initializes the registeration by selecting the corresponding item in “Log In” form.
Then the ”Registration” form is displayed in the ”Content” part. The user fills the required
fields and, perhaps, the optional fields (sect. 3.3.10 User information format) and presses the
”Register” button. If there are invalid values the ”registration” form will be reloaded in the
”Content” part and the error is indicated (sect. 3.3.13 Error message format, 6). If the values
are correct, then the acknowledgment message is displayed in the ”Content” part (sect. 3.3.12
Acknowledgment format, 4).

This form corresponds to the ”Register a user” use case, see Figure 25

Form name: Registration
Format: User information

o

(USER | |
" _— |
Initialize registration L Send request on form "Registration” |
=y Send "Reagistration” form
Registration Fill the form (Nickname, password,..)
Fullname Send form with filled fields registerUser()
E-mall:
* Nick name:
S M sendAcknowledgments(
* Re-enter password: :
Information i
i =
ZEcutyounst E Format Acknowledgment D |
= |
* - required field T
i ;

Figure 25: Register a User

4.6 Send user notes

The web system allows a user to send her/his opinion on the solution result or about the web
system as a whole. The process of sending notes behaves as follows, see Figure 26.

1.1: sendUserNotes(note) , a user sends a note to the web server;

Student Software Engineering Project: Web-SynDic 46
- T —— 1.2: sendUserNote(note)
sendUserNote(note;
—>
o «—
1.8 1.7: [Acknowledgement]

1.6: [Acknowledgment T t 3: sendUserNote(note, user data)

Data Store Management

—>

1.4: sendAdminMessage(note)

Figure 26: Send user notes Collaboration Diagram

1.2: sendUserNotes(note) forwards the note to session processing;
1.3: sendUserNotes(note) forwards the note to management;

1.4: sendAdminMessage(note, user data) sends a message with the note and extra user’s data to

the system administrator (by email);
1.5: updateStatistics() updates statistics in data store (a note is sent);
1.6: [Acknowledgment] returns the acknowledgment to session processing;
1.7: [Acknowledgment] returns acknowledgment to the web server;

1.8: sendAcknowledgments(Acknowledgment) the web server produces the web form with the
acknowledgment and sends it to the user.

There are two types of notes: general notes (about Web-SynDic as a whole system) and a
note on the outcome solution.

A general note. If a user chooses corresponding item in the main menu, then “General notes”
form is displayed in the ”Content” part. The user writes a note (sect. 3.3.11 Note format) and
presses ”Send note” button. If length of the note is more than 4096 symbols, then the error
message is displayed in the ”Content” part (sect. 3.3.13 Error message format, 3). If not, then
the acknowledgment message is displayed in the ” Content” part (sect. 3.3.12 Acknowledgment
format, 3).

A note on solution. If a user has processed a test ANLDE system or a set of them, the
”Notes on solution” form is displayed in the report on solution. The user may choose only one
of two types for a note: agree with the solution or disagree with the solution.

In the case of agreement, the user can attach processed ANLDE system by selecting corre-
sponding check box. By default the ANLDE system is not attached.

Student Software Engineering Project: Web-SynDic 47

In the case of disagreement, the processed ANLDE system is always attached to the note.
The user enters a note (sect. 3.3.11 Note format) and presses ”Send note” button. If length of
the note is more than 4096 symbols, then the error message is displayed in the ” Content” part
(sect. 3.3.13 Error message format, 3). If not, then the acknowledgment message is displayed
in the ”Content” part (sect. 3.3.12 Acknowledgment format, 3).

This form corresponds to the ”Send a note” use case. See Fig. 27.

- USER | |

1 [Note ahout the Web system] 1 Send request on note |

, Send "General notes” form for message

-~ - JForm name: General
) notes

| Format: Note
[Note with the processed ANLDE systemn] Send request on note |

Send "Notes on solution" form with

ili i S o - Form name: Notes on
lity f e
ability for adding processed systent - solition
Compose message sendUserNotes) | Format: Note
< sendAcknowledgrments)
T

'
'

Format: Acknowledament D

———I
———

Notes on Solution

General Notes ﬂ

I
| [+
® Agres with solution ([Attach processed system)

O Disagree (the system will be attached to
g your message)

Figure 27: Send a Note

4.7 Manage user limits

For management of her/his limits on generation and solution processes, a user may initialize
two flows, see Fig. 28.

The first flow is a request for current limits of the user and current default system limits.

1.1: getUserLimits() requests the current limits of the user;

Student Software Engineering Project: Web-SynDic 48

2.1. manageUserLimits{params) 2.2: manageUserLimits{params)

—> —

1.1: getUserLimits(1.2. getUserLimits()

—> —>
<« «—

1.8: [user, default limits] 1.7: [user, default limits]

2.8: sendAcknowledgments(2.7: [acknowledgment]
b .3: getDefaultLimits{
1.6: [default limits] T

LZS: managelUserLimits{params)

2.6: changeSessionLimits(limits)

—
[]

Session processing

1.5: [default limits] 2.5: [limits] T
—»

| User Limits F I Management

‘_

1.4: getDefaultLimits(

<_

2.4: checkUserLimits(params)
Figure 28: Manage User Limits Collaboration Diagram

1.2: getUserLimits() requests the user limits from the current session;
1.3: getDefaultLimits() requests Management subsystem for default limits;
1.4: getDefaultLimits() requests default limits from “User Limits” data store module;
1.5: [default limits] returns the result to Management;
1.6: [default limits] returns the limits (user and default) to Session processing;
1.7: [user, default limits] are given to the web server;
1.8: [user, default limits] are sent in the web form to the browser.
The second one is a request of a user to change her/his user limits.
2.1: manageUserLimits(user limits) sends new values of user limits to the web server;
2.2, 2.3: manageUserLimits(user limits) forwards the user limits to Management subsystem;

2.4: checkUserLimits(user limits) checks the new user limits for correctness and compares with
current default limits;

Student Software Engineering Project: Web-SynDic 49

2.5: [user limits] is forwarded for update to “session processing”;
2.6: changeSessionLimits(user limits) changes the user limits for the active session of the user;
2.7: [acknowledgment] sends the acknowledgment about the change status to the web server;

2.8: sendAcknowledgments() sends a web page with the acknowledgment on the change to the

browser.

A user initiates ”User limits” form using corresponding item in the user menu. Then the
update limits form is displayed in the ”Content” part (sect. 3.3.9 Limits format). The user
changes values of the current user limits. If the new values are correct, then acknowledgment
message (sect. 3.3.12 Acknowledgment format, 2) is displayed in the ” Content” part. If there is
an invalid value, then “User limits” form will be reloaded in the ”Content” part and the error
is indicated (sect. 29 Error message format, 2).

This form corresponds to the “Manage user limits” use case, see Fig. 29.

Form name: User limits &
% Format: Limits Web-SynDic
_USER | '

Initialize user's limits

'
Send request on form "User limits"

Send "User limits" form

Change own limits

Send form "User limits" with changes manageUserLimitsQ

User Limits

<aetaut imi>
<t it
<ostaun i
sendAcknowledgments(

<cataut > -

'
<dstaul >

| <defaut imit Format Acknowledgment 0
<tk imi>

<cotault >

<cafaul it

-——
———

Figure 29: Manage User Limits

4.8 Manage default limits

The system administrator may initialize two flows as it is shown in Figure 30.
The first flow is a request for current default limits in Web-SynDic.

1.1: getDefaultLimits() requests for current default limits;

Student Software Engineering Project: Web-SynDic 50

2.1. manageDefaultLimits{params) 2.2: manageDefaultLimits{params)
—» —>
1.1: getDefaultLimits() 1.2. getDefaultLimits()
—> —>
<« <«
1.8: [default limits] 1.7: [default limits]
“— <«
2.8: sendAcknowledgments{ 2.7: [acknowledgment]
l1 .3: getDefaultLimits{
25: [acknowledgment] 1.6: [default limits] T
_’ l2.3: manageDefaultLimits(params)
1.5: [default limits] 2.6: [acknowledgrent] T
| User Limits I —r I Management
‘_

1.4: getDefaultLimits()
<«

2.4: saveDefaultLimits(params)
Figure 30: Manage Default Limits Collaboration Diagram

1.2, 1.3: getDefaultLimits() forwards the request to Management subsystem:;

1.4: getDefaultLimits() requests a list of current values for default limits in Data store;

1.5: [default limits] are returned to Management;

1.6: [default limits], 1.7: [default limits] are returned/forwarded to the web-server;

1.8: [default limits] is sent in the web form (produced by the web server) to the browser.
The second flow is a request for updating default limits for Web-SynDic.

2.1: manageDefaultLimits() sends changed default limits “params” and requests actual changes
inside the Web-system;

2.2, 2.3: manageDefaultLimits(params) forwards limits “params” to “Management”, server sub-

system;
2.4: saveDefaultLimits(params) updates default limits, and user profiles in Data store;

2.5: [acknowledgment] returns the acknowledgment about the update;

Student Software Engineering Project: Web-SynDic 51

2.6, 2.7: [acknowledgment] returns/forwards the acknowledgment to the web-server;
2.8: sendAcknowledgments() sends a page with the acknowledgment to the browser.

For updating default limits, a user has to log in as a system administrator. Item for update
of default limits is displayed in the user menu and the system administrator may choose it.
After that, the form “Default limits” is displayed with current values in the form elements
(sect. 3.3.9 Limits format) in the “Content” part. The system administrator changes values of
default limits and presses “submit new values” button. If the new values are correct, then the
acknowledgment message (sect. 3.3.12 Acknowledgment format, 2) is displayed in the “Con-
tent”. Otherwise, “Default limits” form will be reloaded in the “Content” part and the error
is indicated (sect. 3.3.13 Error message format, 2).

This form corresponds to the “Manage default limits” use case, see Fig. 31.

Form name: Default limits T
Format: Limits

X Web-SynDic

'

- SYSTEM ADMINISTRATOR
e

L Send request on "Default limits” form - |
Initialize default limits management
Send "Default limits" form
Default Limits
Max. time (sec):
Max, memory (KB):
Max, absolute Change limits -
values of coefficients: Send form "Default limits" with changes
»| | manageDefaultLimits(
Max, valiies of solution
basis components: ||
Max. equations:
MECAKGoWE L sendAcknowledgments()
Max. set size: '
Max, solutions: Format Acknowledgment D T
Max. solutions to be [|
Incliited In a report: | |
|

Submit new values T |

Figure 31: Manage Default Limits

4.9 Get statistics

The system administrator may initialize the only flow to request statistics with chosen metrics,
see Fig. 32.

1.1: sendRequestStatActivity(params) sends parameters “params” (see sect. 3.2.4 Activity
Statistics) and requests to produce the activity statistics report;

Student Software Engineering Project: Web-SynDic 52

1.1: sendRequestStatActivity(params) 1.2: requestStatisticsReport(params)

Client Part Session processing
L

‘_

1.8: sendStatisticsReport() 1.7: [activity report]
t&: requestStatisticsReportiparams)

1.6: [activity repor] T

I Activity Statistics |

1.5: [activity data]

—»

| Activity Data I

‘_

1.4: requestStatisticsReport(params)
Figure 32: Get Statistics Collaboration Diagram

1.2, 1.3: requestStatisticsReport(params) calls “activity statistics”, sends parameters “params”

and forwards the request on the statistics report to Activity Statistics subsystem;

1.4: requestStatisticsReport(params) requests statistics data from Activity Data module in Data

store;
1.5: [activity data] is returned chosen data to “Activity Statistics”;
1.6: [activity report] is returned evaluated activity statistics;
1.7: [activity report] is passed to the web server;

1.8: sendStatisticsReport() sends the statistics report (as web page) on user activity to the
browser.

A user logs in as a system administrator in the ”Log In” form (sect. 3.3.10 User information
format). Only in this case “Activity statistics” form is available in the user menu. Then the
system administrator starts “Activity statistics” form using this item in the user menu. The
“Activity statistics” form (sect. 3.3.6 Activity domain list format, sect. 3.3.7 activity metrics
list format) is displayed in the “Content” part. After choosing activity domain and activity
metrics, she/he presses “Get report” button and the report (sect. 3.3.8 Statistics report format)
is loaded to the “Content” part.

This form corresponds to the ”Get statistics” use case, see Fig. 33.

4.10 Manage users

For user management, the system administrator may initialize two flows, see Figure 34.
The first flow is a request for data of the user with given nickname.

Student Software Engineering Project: Web-SynDic 53

5vsTem ASMINISTRATOR

- | |
Initialize statistics | |
— a3 Send request on statistics 4

-~ 11 Select activity domain and metrics (Activity domain, activity metrics)
o in "Activity statistics” form

i e requestStatisticsReport()
Form name: Activity statistics
Formats: Activity domain list,
activity metrics list.

Activity Statistics

Domain:

AN

o L =
Get report !T :
|

sendStatisticsReport)
T

——

Figure 33: Get Statistics

2.1. manageUsers(nickname, params) 2.2: manageUsersinickname, params)

—> —>
1.1: getUserProfile(nickname) 1.2. getUserProfilednickname) 1.3: getUserProfile(nickname)
—> —> —>
S <
1.8: [user data] 1.7: [user data] 1.6: [user data]
‘_ <__
2.8: sendAcknowledgments() 2.7: [acknowledgment]

2.5: [acknowledgment]

—>
1.5: [user data] 2.6: [acknowledgment]
—> —>
<4+— <4+— <4+
2.4.1:manageUsers(nickname, params) 1.4: getUserProfile(nickname) 2.3: manageUsersinickname, params)
<+—

2.4.0: saveUserProfile(nickname, params)

Figure 34: Manage Users Collaboration Diagram

Student Software Engineering Project: Web-SynDic 54

1.1: getUserProfile(nickname) requests the current data of the registered user with the given

“nickname”;

1.2, 1.3: getUserProfile(nickname) forwards the request to “Management” subsystem;
1.4: getUserProfile(nickname) requests the data from “User Profile” module of Data store;
1.5: [user data] returns chosen data to “Management”;
1.6, 1.7: [user data] is returned/forwarded to the web server;
1.8: [user data] is sent as a web page to the browser.

The second flow is a request for updating the user data.
2.1: manageUsers(nickname, params) sends new data for user with “nickname” as “params”;

2.2, 2.3: manageUsers(nickname, params) forwards the user data “params” to “Management”

subsystem;

2.4.0: saveUserProfile(nickname, params) makes actual update of user profile, stored in “User
Profile” module of Data store;

2.4.1: manageUsers(nickname, params) makes additional changes of user limits (if necessary),

stored in “User Limits” module of Data store;
2.5: [acknowledgment] is returned the acknowledgment to “Management” module;
2.6: [acknowledgment], 2.7: [acknowledgment] are returned/forwarded to the web server;

2.8: sendAcknowledgments() sends a web page with the acknowledgment to the browser.

A registered user may change only her/his own information in the ” User information” form.
The system administrator may change user information for any user.

The system administrator starts this management using corresponding item in the user
menu. “Manage users” form is displayed in the “Content” part. The system administrator
enters a nickname (sect. 3.3.10 User information format) and presses “Edit” button. If the
nickname is correct, then “User information” form is displayed in the “Content” part. Other-
wise, “User limits” form is reloaded with the error message (sect. 3.3.13 Error message format, 1)
in the “Content” part.

Any other user changes her/his account information in the “User information” form and
presses the “Submit new values”. If there are invalid values (for example password and re-
entering password do not match, etc.), then “User information” form is reloaded in the “Con-
tent” part and the error is indicated (sect. 3.3.13 Error message format, 2).

These forms correspond to the “Manage users” use case, see Fig. 35.

Student Software Engineering Project: Web-SynDic 55

Form name: Manage users
Browser Format User information Web-SynDic
Manage Users % DR
SYSTEM ADMINISTRATOR T v T

! ~SY2TEMADNINETRATOR. | L |
Nickname: L ~ Send request on fofm "Manage users” 1
Initialize ugsf's

Send "Manage users" form

Enter a user nickname Send request on nickname:

Not only a system administrator can
Imanage users, user also can change
hisiner own information. But system
ladministrator can change account
information for any user.

i Send the form "User information”

---------- |- - - - [Form name: User information
Format User information
Change user's information Al

Send "User information” form with changes |

manageUsers()
User Information: <nickname>

Full name: [

<
Information: 1 4
Format: Acknowledgment T

S

[[] Change password
Password
Reeterpesovor | |

[] Remove account

Submit new valiies

E-mall [l sendAcknowledgments
|

Figure 35: Manage Users

5 Subsystems

The color style for subsystem design models is shown in Figure 36.

Interface class Intersystem class

Figure 36: Color style for subsystem design models

5.1 Web Server

The Web Server subsystem is responsible for data representation in interaction with users. The

architecture of the web server is shown in Fig. 37.
5.1.1 JSP Files
The user interface is implemented using Java Server Pages technology.

main.jsp the only page directly accessible from the user’s web browser, implements page layout
(sect. 3.1.3), responses of all other JSP’s are included in the content part, except responses
of the login.jsp are included in the login part;

Student Software Engineering Project: Web-SynDic

56

jspimelude jspiinclude P>

I

i

i

i

I

i

i

i

i

i

i

i

i

i

i

i

i

!

i

' [jspiinclude N
sincludi

v F o jspiinclude

' jepii e

i

H o

i

i

i

i

i

|

jspinclude P>
jspiinbude P>

R
[= .
| L
I
_ jspiincl !
e "(-------------

Figure 37: Web Server Architecture

index.jsp displays start page;
manageusers.jsp displays Manage Users form (sect. 3.2.8);
userinfo.jsp displays User Information form (sect. 3.2.9);

registration.jsp displays Registration form (sect. 3.2.6);

limits.jsp displays User Limits (sect. 3.2.7) or Default Limits (sect. 3.2.5) forms;

login.jsp displays Login form (sect. 3.2.3);

notes.jsp displays General Notes (sect. 3.2.10) of Notes on Solution sect. 3.2.11) forms;

process.jsp displays Process an ANLDE System form (sect. 3.2.1);

processset.jsp displays Process a Set of ANLDE Systems form (sect. 3.2.2);

notification.jsp displays notification message (sect. 3.3.12 Acknowledgment Format,

sect. 3.3.13 Error Message Format, sect. 3.3.14 Process Message Format);

Student Software Engineering Project: Web-SynDic 57

statistics.jsp displays Statistics form (sect. 3.2.4);
statisticsreport.jsp displays a statistics report (sect. 3.3.8 Statistics Report Format);

solutionreport.jsp displays solution report (sect. 3.3.3 ANLDE System Solution Format,
sect. 3.3.4 ANLDE System Set Solution Format).

5.1.2 Servlets

Servlets are wused to handle various user requests. Servlets classes extend
javax.servlet.http.HttpServlet and override doPost() method to handle POST requests.

UserManager receives information from User Information and Registration forms, invokes
the Management subsystem to add or change user accounts;

LimitsManager receives information from User Limits and Default Limits forms;
Login receives information from Login form and logout request;
NotesDispatcher receives information from General Notes and Notes on Solution forms;

Process receives information from Process an ANLDE System and Process a Set of ANLDE
Systems forms, translates data in ANLDE System Format (sect. 3.3.1) to the internal
format (class ANLDE).

Additional methods:

e private ANLDERequest parseANLDE(String source, boolean set, Limits limits)

throws ANLDEFormatException;

translates ANLDE system (if set value is false) or ANLDE system set (if set
value is true) from the ANLDE System Format (sect. 3.3.1) or ANLDE System Set
Format (sect. 3.3.2) to the internal format (instance of the ANLDERequest class).
ANLDEFormatException is thrown in case of parsing error or when the ANLDE
system does not conform to the limits.

5.1.3 Exceptions

ANLDEFormatException thrown by Process.parse ANLDE() method when it fails to parse
ANLDE system (set).

Student Software Engineering Project: Web-SynDic 58

5.1.4 Other Classes

ANLDERequest extends ANLDE, used to receive notifications on solving and generating
ANLDE systems and system sets from the Algorithm Server (see sect. 5.3) subsystem.

Fields:

e private SolverQutcome solution;

e private processing = false;
true — ANLDE System (Set) is currently in process of generating or solving, false
ANLDE System (Set) is ready to be processed.

Following abstract methods are implemented:

e public void solved(SolverQOutcome) ;
called by Algorithm Server, notifies waiting thread of report.jsp, stores

SolutionOutcome in solution variable;

e public void generated();
called by Algorithm Server, notifies the Process servlet about finishing ANLDE

generation;

e public void error(String);
called by the Algorithm Server to notify waiting report.jsp or Process servlet thread
about ANLDE generation or solution errors.

5.2 Session processing

Session processing entity includes one class SessionManager. At the implementation phase,

this class will be coded as a part of web server.

5.2.1 Class SessionManager

Class SessionManager is used to store user profile, limits, statistics and last solved ANLDE
system information. It is shown in Fig. 38.

Fields:
private HttpSession hp; instance of HttpSession object.
Constructors:

SessionManager(HttpSession hp); creates a new SessionManager object corresponding to

existing http session.

Student Software Engineering Project: Web-SynDic 59

Management

ANLDE

Limits

Statistics

UserProfile

Figure 38: Class SessionManager
Methods:
public void login(String nickname, String password); binds attributes of registered user to
the existing session:

1. tries to get UserProfile object corresponding to nickname and password;

2. creates new instance of Statistics object;

3. binds newly created objects to the session. Old objects are unbound automati-
cally and notified using HttpSessionBindingListener;

4. unbinds ANLDE object.

public void logout(); is similar to login function except that default user’s profile is used
instead of registered user’s profile.

public UserProfile getUserProfile(); returns user profile.

public Limits getLimits(); return user limits.

public Statistics getStatistics(); returns statistics.

public void setANLDE(ANLDE a); binds new ANLDE object to the session.
public ANLDE getANLDE (); returns ANLDE object.

Student Software Engineering Project: Web-SynDic 60

5.3 Algorithm server

The composition model of classes for the algorithm server is shown in Fig. 39.

[Used for implementationl
Limits

~time - int

- memory: int

- coefficients : int

- solutionValues : int
- equations : int

- unknowns int
- systems - Int
- solutions : int
- reportsolutions : int
- buffer : GenTask - buffer - java,utl ArayList

- generatorList java il ArrayList e ’st;.::::luriﬁ.m

- pathProfie : String - pathProfile : Sring

+ generateANLDESystem(: void " -

+ generateANLDESystemSet0 : void .iﬁlﬂﬁﬁég’;ﬁiﬂg&“ S
+ getBufferCount - int + getBufferCount) - int

+ getGeneratorList0 : Stringll + getSolverList0 : Stringl

1

1

GenParams

m:int
s:int
1. ANLDE Soveroutcorme
- system : ANLDESystem
- system : ANLDE
L yEIem AT AN - listsol - ava il ArrayList
+ salved(void - serverCh : Server
+ generated(: void - ANLDECh : ANLDECh
+ error() void
. ‘ \
1.
ANLDESystem Senver ANLDECh
“nsint ERIEFREED ~opu Sting - minEquations : int
| | coomgeers ||
- syste i list:java il Araytist | | - metrics : Solveritetrics: - 05 String -
5 int
ranes Sl - maUnknowns int
/ \ - maxCoeficient: int
minSols :int
Salverifetics, Solution - aversals : double
o - maisals ‘int
SR o - sumSystemTimes :javautl ArayList
- systemTime - float - sols intg] 1 o
- workTime - o 2
SRR - resuls : java.ulArrayList
- result: boolean

Figure 39: Algorithm server architecture

The algorithm server has two interface classes for generating and solving ANLDE systems.
The generating and solving processes can be implemented as parallel or sequential processes.

In parallel approach, all systems are solved simultaneously. It means that for each solving
process the web system starts separate copy of a solver. Each started copy takes away resources
from other processes. As a result all ANLDE systems are solved slowly (process degradation).

For the sequential approach, all systems are solved in turn. Each solving process has maxi-
mum resources but solving time for each ANLDE system increase by summary time of ANLDE
systems that were pushed in the stack earlier.

After discussion between team members we choose the sequantial approach for solving and
generating ANLDE systems, because of user requirements AP2: Web server overload and
AP1: Concurrent user sessions. These requirements define that the web system must not
overload a base server more than 75% of the total server workload and web system must serve
up to 5 users without significant reduction of the server perfomance.

Student Software Engineering Project: Web-SynDic 61

After ending, the generating or solving process calls method “solved” or “generated” which
sends signal to the web system and after getting this signal, the web system can work with the
generated ANLDE systems or the solver outcome. This methods redefines in heritable classes
of the web server.

External algorithms will include java classes to work with each of them. Each java class
is a child of classes “Solver” or “Generator”. When we work with external algorithms, we
use methods and fields defined in classes “Solver” and “Generator”. It allows to include new
external algorithms without recompilation of the whole web system.

For simplicity, in generation process we use user limits as generating parameters like number
of systems in set, number of equations and unknowns, etc. Generator build ANLDE systems
with exact dimensions. And we suppose that generator work time is small and does not exceed

time limit; the web system does not limit work time for generation process.

5.3.1 Class GeneratorSpooler

Description: class to generate ANLDE systems. It includes interface functions. In order to
get maximum precision of solution process metrics, it is better to serially start generating
process. Therefore, it has to use a buffer (queue) of generating tasks.

For generation process, one needs to know generator location and identificator. Therefore,
when generator spooler starts, it loads the generator profile.

Fields:
private java.util.List buffer; a buffer of GenTask objects
private java.util.List generatorList; a list of Generator objects
private String pathProfile; path and name of a generator profile

Constructors:
public void GeneratorSpooler(String path); loading generators and starting generating
process. Generator uses buffer for generating ANLDE systems

Methods:
public void generateANLDESystem(ANLDE, Limits, String); — generate ANLDE system
using generator in String
public void generateANLDESystemSet(ANLDE, Limits, String); — generate a set of ANLDE
systems using generator in String
public int getBufferCount(); — get count of tasks

Student Software Engineering Project: Web-SynDic 62

public String[| getGeneratorList(); — gets list of generator names

5.3.2 Class SolverSpooler

Description: class for solve ANLDE systems. Includes interface functions. In order to get
maximum precision of solution process metrics, it is necessary to serially start the solving
process. Therefore it is necessary to work with a buffer of solving tasks. After finishing
the work of external algorithms, SolverSpooler sends signal with SolverOutcome.

For solving process we need to know solver location and identificator. Therefore, when

solver spooler starts, it loads the solver profile.

Fields:
private java.util List buffer, — buffer of SolTask objects
private java.util List solverList; — list of Solver objects
private Solver mainSolver; — main solver like anlde

private String pathProfile; — file with solver profile

Constructors:
public void SolverSpooler(String path); — loading solvers and starting solving process.
Solver uses buffer for solving ANLDE systems

Methods:
public void solveANLDE(ANLDE, Limits, String[]); — solve ANLDE system or a set of
ANLDE systems using solvers in String|]
public int getBufferCount(); — get count of tasks
public String[| getSolverList(); — gets list of solver names

5.3.3 Class Limits

Description: class for storing user limits and default limits.

Fields:

private int time; — maximum value of time
private int memory; — maximum value of memory
private int coefficients; — maximum value of coeflicients

private int solutionValues; maximum value of solution coefficients

Student Software Engineering Project: Web-SynDic

63

private int equations; — maximum number of equations
private int unknowns; — maximum number of unknowns
private int systems; — maximum number of systems in set
private int solutions; — maximum number of solutions
private int reportSolutions; — maximum number of solutions in report
Constructors:
public Limits(); — storing new limits.
Methods:
public int getTime(); — gets maximum value of time
public int getMemory(); — gets maximum value of memory
public int getCoefficients(); — gets maximum value of coefficients

public int getSolutionValues(); — gets maximum value of solution coefficients
public int getEquations(); — gets maximum number of equations

public int getUnknowns(); gets maximum number of unknowns

public int getSystems(); — gets maximum number of systems in set

public int getSolutions(); — gets maximum number of solutions

public int getReportSolution(); — gets maximum number of solutions in report
public void setTime(int); — sets maximum value of time

public void setMemory(int); — sets maximum value of memory

public void setCoefficients(int); — sets maximum value of coefficients

public void setSolutionValues(int); — sets maximum value of solution coefficients
public void setEquations(int); — sets maximum number of equations

public void setUnknowns(int); — sets maximum number of unknowns

public void setSystems(int); — sets maximum number of systems in set

public void setSolutions(int); — sets maximum number of solutions

public void setReportSolution(int); — sets maximum number of solutions in report

5.3.4 Class ANLDE
Description: class for storing a test ANLDE system or a set of ANLDE system.

Fields:

protected ANLDESystem system; — ANLDE system or null if a set of ANLDE systems

was stored

protected ANLDESystemSet systemSet; — a set of ANLDE systems or null if ANLDE

Student Software Engineering Project: Web-SynDic 64

system was stored

Constructors:

public ANLDE(ANLDESystem); — constructor for storing ANLDE system
public ANLDE(); — constructor nondefined ANLDE system
public ANLDE(ANLDESystemSet); — constructor for storing a set of ANLDE systems

Methods:

public abstract void solved(SolverOutcome); — sends solved signal and solver outcome.
This method implemented in extended classes.

public abstract void generated(); — sends generated signal. This method implemented in
extended classes.

public abstract void error(String); — sends error signal. This method implemented in
extended classes.

public void setSystem(ANLDESystem); sets ANLDE system and a set of ANLDE
systems set to null

public void setSystemSet(ANLDESystemSet); sets a set of ANLDE systems and a
ANLDE system set to null

public ANLDESystem getSystem(); — gets ANLDE system

public ANLDESystemSet getSystemSet(); — gets a set of ANLDE systems

5.3.5 Class ANLDESystem
Description: class for storing ANLDE system.

Fields:

private int n; — number of equations

private int m; — number of unknowns

private int[n][m] system; — matrix of coefficients

private int[m] unknowns; — matrix of left part of ANLDE system
private String[m] names; — list of unknowns names

Constructors:

ANLDESystem(); — storing ANLDE system

Student Software Engineering Project: Web-SynDic

Methods:
public int getN(); — gets number of equations
public int getM(); — gets number of unknowns
public int[][] getSystem(); — gets matrix of coefficients
public int[| getUnknowns(); — gets left part of ANLDE system
public String[] getNames(); — gets list of unknowns names
public void setN(int); — sets number of equations
public void setM(int); — sets number of unknowns
public void setSystem(int[][]); sets matrix of coefficients
public void setUnknowns(int[]); — sets left part of ANLDE system
public void setNames(String[]); sets list of unknowns names

5.3.6 Class ANLDESystemSet
Description: class for storing a set of ANLDE systems.

Fields:
private java.util.List list; — list of ANLDE objects

Constructors:
ANLDESystemSet(); — storing a set of ANLDE systems

Methods:
public int getS(); — gets number of systems
public java.util.List getList(); — gets set of ANLDE systems
public void setList(java.util.List); — sets set of ANLDE systems

5.3.7 Class SolverOutcome
Description: class for storing solver outcome.

Fields:

private ANLDE system; — ANLDE system or a set of ANLDE system

private java.util List listSol; — list of SolverProcess objects
private Server serverCh; — server characteristics
private ANLDECh anldeCh; characteristics of ANLDE system

Student Software Engineering Project: Web-SynDic 66
Constructors:

public SolverOutcome(); — storing solver outcome
Methods:

public ANLDE getANLDE(); — gets ANLDE system

public java.util.List getListSol(); gets solutions

public Server getServer(); — gets server characteristics

public void setANLDE(ANLDE); sets ANLDE system

public ANLDECh getANLDECh(); — gets ANLDE system characteristics
public void setANLDECh(ANLDECh); — sets ANLDE system characteristics
public void setListSol(java.util.List); — sets solutions

public void setServer(Server); — sets server characteristics

5.3.8 Class ANLDECHh
Description: class for storing ANLDE system characteristics.

Fields:

private int minEquations; — minimal number of equations
private int minUnknowns; — minimal number of unknowns
private double averEquations; — average number of equations
private double averUnknowns; — average number of unknowns
private int maxEquations; — maximum number of equations
private int maxUnknowns; — maximum number of unknowns

private int maxCoefficient; — maximum coefficient in ANLDE systems

private int minSols; — minimum number of solutions

private double averSols; — average number of solutions

private int maxSols; — maximum number of solutions

private java.util.List sumSystemTimes; — list of summary system time periods for each
solvers

private java.util.List sumWorkTimes; — list of summary work time periods for each solvers
private java.util.List maxMemory; — list of maximum memories for each solvers

private java.util. List results; — list of results

Constructors:

public ANLDECh(); storing solver outcome

Student Software Engineering Project: Web-SynDic

Student Software Engineering Project: Web-SynDic 68

Methods:
public int getMinEquations(); — gets minimal number of equations
public int getMinUnknowns(); — gets minimal number of unknowns
public double getAverEquations(); — gets average number of equations
public double getAverUnknowns(); — gets average number of unknowns
public int getMaxEquations(); — gets maximum number of equations
public int getMaxUnknowns(); — gets maximum number of unknowns
public int getMaxCoefficient(); — gets maximum coefficient in ANLDE systems
public int getMinSols(); gets minimum number of solutions
public double getAverSols(); — gets average number of solutions
public int getMaxSols(); gets maximum number of solutions
public java.util.List getSumSystemTimes(); — gets summary system time periods
public java.util.List getSumWorkTimes(); — gets summary work time periods
public java.util.List getMaxMemory(); — gets summary memories
public java.util.List getResults(); — gets results
public void setMinEquations(int); — sets minimal number of equations
public void setMinUnknowns(int); — sets minimal number of unknowns
public void setAverEquations(double); — sets average number of equations
public void setAverUnknowns(double); — sets average number of unknowns
public void setMaxEquations(int); — sets maximum number of equations
public void setMaxUnknowns(int); — sets maximum number of unknowns
public void setMaxCoefficient(int); — sets maximum coefficient in ANLDE systems
public void setMinSols(int); — sets minimum number of solutions
public void setAverSols(double); — sets average number of solutions
public void setMaxSols(int); — sets maximum number of solutions
public void setSumSystemTimes(java.util.List); — sets summary system time periods
public void setSumWorkTimes(java.util.List); — sets summary work time periods
public void setMaxMemory(java.util.List); — sets summary memories
public void setResults(java.util.List); — sets results

5.3.9 Class Solution
Description: class for storing a solution.

Fields:
private int g; — number of solutions
private int[g][m] sols; matrix of solutions

Constructors:
public Solution(); — storing solution
Methods:
public void setQ(int); — sets number of solutions

public void setSols(int[][]); — sets matrix of solutions
public int getQ(); — gets number of solutions
public int[][] getSols(); — gets matrix of solutions

5.3.10 Class SolverMetrics

Description: class for storing metrics of solution process.

Fields:

private String name; — name of solver
private float systemTime; — system time used for solving process
private float workTime; — solve work time

private int memory; memory usage

private boolean result; — solving process result (true if solved)
Constructors:

public SolverMetrics(); — creates storing for solver metrics
Methods:

public void setName(String); — sets solver name

public void setSystemTime(float); sets system time
public void setWork Time(float); — sets work time
public void setMemory(int); — sets memory usage
public void setResult(boolean); — sets result

public String getName(); — gets solver name

public float getSystemTime(); gets system time
public float getWorkTime(); — gets work time

public int getMemory(); — gets memory usage

public boolean getResult(); — gets result

Student Software Engineering Project: Web-SynDic

69 Student Software Engineering Project: Web-SynDic 70

5.3.11 Class SolverProcess

Description: class for storing characteristics of solving process, and solution.

Fields:
private Solution sol; — solution
private SolverMetrics metrics; solver metrics
private boolean compareResult — result of comparing solution with anlde solution

Constructors:

public SolverProcess(); — creates storing for solver process

Methods:
public void setSol(Solution); — sets solution
public void setMetrics(SolverMetrics) sets metrics
public void setCompareResult(boolean) — sets comparison result
public Solution getSol(); — gets solution
public SolverMetrics getMetrics() ~ gets metrics
public boolean getCompareResult() — gets comparison result

5.3.12 Class Server
Description: class for storing server characteristics.

Fields:
private String cpu; — information about CPU
private String ram; — information about RAM
private String os; information about OS
private String nice; — information about priority

Constructors:
public Server(); — creates storing for server characteristics

Methods:
public void setCPU(String); — sets CPU
public void setRAM(String); — sets RAM

public void setOS(String); — sets OS
public void setNice(String); — sets priority
public String getCPU(); — gets CPU
public String getRAM(); — gets RAM
public String getOS(); — gets OS

public String getNice(); — gets priority

5.3.13 Class Generator
Description: class for storing generator description, like location, conversion functions, etc.

Fields:
private String name; — generator’s name
private String path; — generator’s location

private String description; — generator’s description

Constructors:
public Generator(); creates storing for generator

Methods:
public void setName(String); — sets name
public void setPath(String); — sets path
public void setDescription(String); — sets description
public String getName(); — gets name
public String getPath(); — gets path
public String getDescription(); — gets description
public void generate(ANLDE, Limits); — generates ANLDE system
public void generateSet(ANLDE, Limits); — generates a set of ANLDE systems

5.3.14 Class Solver

Description: class for storing solver description, like location, conversion functions, etc.

Fields:
private String name; — solver’s name
private String path; — solver’s location

Student Software Engineering Project: Web-SynDic 71

private String description; — solver’s description

Constructors:
public Solver(); — creates storing for generator

Methods:
public void setName(String); sets name
public void setPath(String); — sets path
public void setDescription(String); — sets description
public String getName(); — gets name
public String getPath(); — gets path
public String getDescription(); gets description
public SolverOutcome solve(ANLDE, Limits); — converts and solves ANLDE system or a
set of ANLDE systems
public boolean checkSolution(Solution mainSol, Solution currentSol); compares current
solution with main solver solution and return result.

5.3.15 Class GenTask

Description: class for storing generating tasks.

Fields:
private ANLDE anlde; — ANLDE system which will be generated
private Limits limits; — user limits

private String generator; — explotable generator

Constructors:
public GenTask(); — creates task

Methods:
public void setLimits(Limits); sets user limits
public void setGenerator(String); — sets explotable generator
public void setANLDE(ANLDE); — sets ANLDE system
public Limits getLimits(void); gets user limits
public String getGenerators(void); — gets explotable generator
public ANLDE getANLDE(void); gets ANLDE system

Student Software Engineering Project: Web-SynDic

72

5.3.16 Class SolTask
Description: class for storing solving tasks.

Fields:

private ANLDE system; — ANLDE system for solving

private Limits limits; — user limits

private String[] solvers; — explotable solvers

Constructors:
public GenTask(); — creates task

Methods:

public void setANLDE(ANLDE); — sets ANLDE system

public void setLimits(Limits); — sets user limits
public void setSolvers(String[]); — sets explotable

solvers

public ANLDE getANLDE (void); — gets ANLDE system

public Limits getLimits(void); — gets user limits

public String[| getSolvers(void); — gets explotable solvers

5.4 Solver classes

5.4.1 Class Solver-anlde extends Solver

Description: class for storing anlde solver description, like location, conversion functions, etc.

Fields:
private String name="anlde”; — solver’s name
private String path=""/anlde"; — solver’s location

private String description="anlde solver. Autor:

solver’s description

Constructors:
public Solver-anlde(); — creates storing for solver

Methods:
public String getName(); — gets name

D. G. Korzun.

Find Hilbert basis”; —

Student Software Engineering Project: Web-SynDic 73

public String getPath(); — gets path

public String getDescription(); — gets description

public SolverOutcome solve(ANLDE,Limits); — converts ANLDE system or a set of ANLDE
systems into anlde format and solves it. Solver returns Hilbert basis.

public boolean checkSolution(Solution mainSol, Solution currentSol); — this method always
returns true, because we compare equal solutions.

5.4.2 Class Solver-slopes extends Solver

Description: class for storing slopes solver description, like location, conversion functions, etc.

Fields:
private String name="slopes”; — solver’s name
private String path=""/slopessys"; — solver’s location
private String description="slopes solver. Autors: Ana Paula Tomas, Miguel Filgueiras. Find
Hilbert basis"; — solver’s description
Constructors:

public Solver-slopes(); creates storing for solver

Methods:
public String getName(); — gets name
public String getPath(); — gets path
public String getDescription(); — gets description
public SolverOutcome solve(ANLDE Limits); — converts ANLDE system or a set of ANLDE
systems into slopes format and solves it. Solver returns Hilbert basis.
public boolean checkSolution(Solution mainSol, Solution currentSol); — this method com-
pare Hilbert basises elementwise. But vectors in Hilbert basises may be in different order.
Therefore required to find fit vectors before compare it.

5.4.3 Class Solver-lp_solver extends Solver

Description: class for storing Ip_solver solver description, like location, conversion functions,

ete.

Fields:
private String name="1Ip_solver”; — solver’s name
private String path=""/Ip_solver"; — solver’s location

Student Software Engineering Project: Web-SynDic 74

private String description="Ip_solver solver. Find particular solution.”; — solver’s description

Constructors:
public Solver-Ip_solver(); — creates storing for solver

Methods:
public String getName(); — gets name
public String getPath(); — gets path
public String getDescription(); — gets description
public SolverOutcome solve(ANLDE, Limits); — converts ANLDE system or a set of ANLDE
systems into Ip_solver format (make optimization problem) and solves it. Solver returns
particular solution.
public boolean checkSolution(Solution mainSol, Solution currentSol); — this method find

particular solution in Hilbert basis.

5.4.4 Class Solver-GLPK extends Solver

Description: class for storing GLPK solver description, like location, conversion functions,

ete.
Fields:

private String name="GLPK"; — solver’s name

private String path=""./glpk”; solver’s location

private String description="GLPK solver. Find particular solution.”; — solver’s description
Constructors:

public Solver-GLPK(); — creates storing for solver

Methods:
public String getName(); — gets name
public String getPath(); gets path
public String getDescription(); — gets description
public SolverOutcome solve(ANLDE,Limits); converts ANLDE system or a set of ANLDE
systems into GLPK format (make optimization problem) and solves it. Solver returns
particular solution.
public boolean checkSolution(Solution mainSol, Solution currentSol); — this method find

particular solution in Hilbert basis.

Student Software Engineering Project: Web-SynDic 75

5.5 Generator classes
5.5.1 Class Generator-Gauss

Description: class for storing gauss generator description, like location, conversion functions,

ete.
Fields:
private String name="gauss"; — generator’s name
private String path=""./gaussgen”; — generator’s location
private String description="ANLDE generator. Generate simple ANLDE system and corre-
sponding Hilbert basis”; — generator’s description
Constructors:
public Generator-Gauss(); — creates storing for generator
Methods:

public String getName(); — gets name

public String getPath(); — gets path

public String getDescription(); — gets description

public ANLDE generate(GenParams,Limits); — converts parameters and limits into internal

format and generates ANLDE system or a set of ANLDE systems

5.5.2 Class Generator-Gordano

Description: class for storing gordano generator description, like location, conversion func-

tions, etc.
Fields:
private String name="gordano”; — generator’s name
private String path=""/gordanogen”; — generator’s location
private String description="ANLDE generator. Generate ANLDE system and corresponding
Hilbert basis”; — generator’s description
Constructors:

public Generator-Gordano(); creates storing for generator

Student Software Engineering Project: Web-SynDic 76

Methods:
public String getName(); — gets name
public String getPath(); — gets path
public String getDescription(); — gets description
public ANLDE generate(GenParams,Limits); — converts parameters and limits into internal
format and generates ANLDE system or a set of ANLDE systems

5.5.3 Class Generator-ExpandedGordano

Description: class for storing expanded gordano generator description, like location, conver-
sion functions, etc.

Fields:
private String name="expandedGordano”; — generator’s name
private String path=""/exgordanogen”; — generator’s location
private String description="ANLDE generator. Generate ANLDE system and corresponding
Hilbert basis”; — generator’s description
Constructors:

public Generator-ExpandedGordano(); creates storing for generator

Methods:
public String getName(); — gets name
public String getPath(); — gets path
public String getDescription(); — gets description
public ANLDE generate(GenParams,Limits); — converts parameters and limits into internal

format and generates ANLDE system or a set of ANLDE systems

5.6 Data store

The class diagram used in data store is shown in Fig. 40.

The data store has three interface classes for user information, default limits information
and statistics information from the data store. It realizes writing and reading data from the
data store from the hard disk. Information about users, default limits and statistics is storing
in log files (Statistics log file, default limits log file, user profile log files). First string in each
files is reserved for a format version number.

Student Software Engineering Project: Web-SynDic s

UserProfile Limits
UserProfileStare DefaultLimif
- path : String - path : String
+ getUserF i + String) : UserProfil + getDefaultLimits() : Limits
+ setUserProfile(profile : UserProfile) : void + setDefaultLimits(defaultLimits : Limits) : void
+ removeUsetProfile(nickname : String) : void

StatisticsStore
- path : String

+ getStatistics(: java.util. List
+ setStatistics(statistics : Statistics) : void

f

Statistics

Figure 40: Data store architecture

5.6.1 User profile log file

Description: This section describes user profile file format. The user nickname and the name
of corresponding user profile file are the same.

Format: A user profile log file is a set of strings. First string after format version number is
a user’s password. Next string is email. The next nine strings are the user limits (Limits

format). And all remaining strings are information about a user.

Example:
F#version: 1
qwerty
qwerty@localhost.localdomain
100
3000
100
100
20
20

Student Software Engineering Project: Web-SynDic 78

20

1000

50

I live in Petrozavodsk

5.6.2 Class UserProfileStore
Description: Class for writing, reading and/or deleting user profiles.

Fields:
private String path; — path to the user profiles store.

Constructors :

public void UserProfileStore(String path); — initializes object with path to the user profile
store.

Methods:
public UserProfile getUserProfile(String nickname);— gets user profile from the hard disk
with corresponding nickname
public void setUserProfile(UserProfile profile); writes user profile on the hard disk
public removeUserProfile(String nickname); — deletes user profile

5.6.3 Class DefaultLimitsStore
Description: Class for writing and reading default limits.

Fields:
private String path; path to the default limits file

Constructors :

public void DefaultLimitsStore(String path); initializes object with path to the default
limits file

Methods:
public Limits getDefaultLimits(); — gets default limits from the data store public void
setDefaultLimits(Limits defaultLimits); ~ writes default limits on the data store

Student Software Engineering Project: Web-SynDic 79

5.6.4 Default limits file

Description: This section describes default limits file format.

Format: A default limits file consists of a set of strings. Each string is a one default limit
(Limits format).

Example:
F##version: 1
100
3000
100
100
20
20
20
1000
50

5.6.5 Statistics log file

Description: This section describes statistics file format. Each file contents monthly activity
statistics.

Format: A statistics log file is a set of strings. Each string is a statistics for one user. String
has a set of fields separated by white spaces. Format described in Statistics class. Fields
in the string are:

1. user nickname

. user IP address

. number of generated systems

. number of input systems

. number of solved systems

. number of acknowledgment systems

. number of systems with solutions, which are discrepances solving

. summary system time(sec)

© 00 N O ot s W N

. summary user work time(sec)

Student Software Engineering Project: Web-SynDic 80

10. summary used memory(Kb)
11. start session time mark(ms)

12. end session time mark(ms)

Example:
#version: 1
guest 123.123.123.123 15 13 14 9 1 0.1 9.34 2192 1068376393 1068377093

5.6.6 Class StatisticsStore

Description: Class for writing and reading activity statistics. Statistics is collected in a buffer.
Records of statistics are writed on the data store per month. Each file of statistics is a
monthly statistics. Activity statistics is accessible via web-interface only for a current
month. Statistics for other previous months is stored on the hard disk of the server.

Fields:
private String path; — path to the statistics files

Constructors:
public void statisticsStore(path); — initialize object with path to the statistics files

Methods:
public java.util.List getStatistics(); get statistics from the data store, returns list of
Statistics objects
public void setStatistics(Statistics statistics); write monthly statistics to the buffer and
data store from the buffer.

5.7 Management

The class diagram used in management subsystem is shown in Fig. 41.
Management has one interface class. It realizes different management functions.

5.7.1 Class UserProfile

Description: Class for storing user profile.

Fields:
private String nickname; — user’s nickname
private String fullname; user’s fullname
private String password; — user’s password

Student Software Engineering Project:

Web-SynDic

81 Student Software Engineering Project: Web-SynDic 82

Limits

UserProfile

- nickname : String
- password : String

- email : String

- infarmation : String

- limits : Limits.

- fullname : String

+valueBoundi t: Hit ionBindingEvent) : void
+valuel it : HitpSessit vent) : void

Management

- userStore : UserProfileSto
- defaultLimits : Limits

- defLimitsStore : DefaultLimitsStare

re

HitpSessionBindingListener

+ getUserPrc : String, p: : String) : UserProfile ANLDE

+ setUserProfile(userProfile : UserProfile) : void

+ getDefaultLimits{ : Limits

+ setDefaultLimits{defaultLimits : Limits) : void

+ sendNotes(note : String, anldeSystem : ANLDE) : void

+ removeUserProfile{nickname : String) : void

+ getUserProfilednickname : String) : UserProfile

DefaultLimitsStore UserProfileStore
Figure 41: Management architecture
private String email; — user’s email
private String information; — user’s information
private Limits limits; user’s limits
Methods:

public String getNickname(); — gets user’s nickname
public void setNickname(String nickname); — sets user’s nickname
public String getFullname(); — gets user’s full name
public void setFullname(String nickname); — sets user’s fullname
public String getpassword(); — gets user’s password
public void setpassword(String password); — sets user’s passwords
public String getEmail(); — gets user’s email
public void setEmail(String email); — sets user’s email
public String getinformation(); — gets user’s information
public void setInformation(String information); — sets user’s information

public Limits getLimits(); — gets user’s limits

public void setLimits(Limits limits); — sets user’s limits

public void valueBound(HttpSessionBindingEvent event); — empty finction for interface
realization

public void valueUnbound(HttpSessionBindingEvent event); — notifies user profile to save
itself

5.7.2 Class Management

Description: Class for management. Functions in this classes manage default limits and users
profiles. It is not necessary to use separate functions for managing user limits, because

limits are stored in UserProfile class.

Fields:
private DeafultLimitsStore defLimitsStore; — object for default limits
private UserProfileStore userStore; — object for user profile
private Limits deafaultLimits; — default limits

Constructors :
public void UserProfileStore(); — initializes object with defLimitsStore and userStore ob-
jects

Methods:
public UserProfile getUserProfile(String nickname, String password); — checks accordance

of nickname to the corresponding user profile log file; checks password; gets user profile;
constrain user limits by default limits

public UserProfile getUserProfile(String nickname); — gets user profile

public void setUserProfile(UserProfile profile); — save userProfile

public delUserProfile(String nickname); — deletes user profile

public Limits getDefaultLimits(); — gets default limits

public void setDefaultLimits(Limits defaultLimits); — writes default limits

public void sendNotes(String note, ANLDE anldeSystem); — managing notes, send notes to
the system administrator e-mail

5.8 Activity statistics

The class diagram used in activity statistics subsystem is shown in Fig. 42.

5.8.1 Class Statistics

Class Statistics (see Fig. 42) is used to transfer statistics data between ActivityStatistics and
StatisticsStore and to store statistics data in SessionManager. Methods set*, add*, and get* are

Student Software Engineering Project:

Web-SynDic

83 Student Software Engineering Project:

Web-SynDic 84

Statistics

- nickname : String
-ip: String

- gensys :int

- inputsys : int

- solvedsys : int

- acknowsys : int

- notmatch : int

- systime : float

- worktime : float

- memary : int

+ Statistics(nickname : String, ip : String)

+valuel

*void

Report

- domain : String
- metric : String

+ Report{domain : String, metric : String)
+ setDomain{domain : String) : void

+ getDomain(: String

+ setMetric{metric : String) : void

+ getMetric() : String

Figure 42: Activity statistics

not shown on diagram.

Fields:

private String nickname;

user nickname.

private String ip;
user IP address.

private int gensys;
number of generated systems.

private int inputsys;
number of input systems.

private int solvedsys;

number of solved systems.

private int acknowsys;
number of acknowledged systems.

private int notmatch;

number of ANLDE systems which are discrepances solving.

StatisticsStore

Methods:

private float systime;

total system time(sec).

private float worktime;
total work time(sec).
private int memory;

total memory used(Kb).

private long startSession;

start session time mark(ms).

private long endSession;

end session time mark(ms).

Constructors:

Statistics(String nickname, String ip);
constructs new Statistics object with corresponding nickname and ip and sets other

attributes to zero.

public void valueUnbound(HttpSessionBindingEvent event); this function is called when
Statistics object is unbound from session. The function extracts StatisticsStore object

from servlet context and saves statistics data.

public String getNickname();

returns nickname.

public String getlp();
returns ip.

public void setGeneratedSystems(int gensys);
sets number of generated systems.

public void addGeneratedSystems(int gensys);
increases number of generated systems by gensys.

public int getGeneratedSystems();

returns number of generated systems.
public void setinputSystems(int inputsys);
sets number of input systems.

public void addInputSystems(int inputsys);

increases number of input systems by inputsys.

Student Software Engineering Project: Web-SynDic 85 Student Software Engineering Project: Web-SynDic 86

e public int getlnputSystems(); e public void addMemory(int memory);
returns number of input systems. increases memory by memory.
e public void setSolvedSystems(int solvedsys); e public int getMemory();
sets number of solved systems. returns memory.
e public void addSolvedSystems(int solvedsys); e public void setStartSession(long startSession);
increases number of solved systems by solvedsys. sets start session time mark.
e public int getSolvedSystems(); e public long getStartSession();
returns number of solved systems. returns start session time mark.

e public void setAcknowledgedSystems(int acknowsys); e public void setEndSession(long endSession);

sets number of acknowledged systems. sets end session time mark.

e public void addAcknowledgedSystems(int acknowsys); e public long getEndSession();

increases number of acknowledged systems by acknowsys. returns end session time mark.

e public int getAcknowledgedSystems(); 5.8.2 Class Report

returns number of acknowledged systems.
« public void setNotMatchSystems(int notmatch): Class Report (see Fig. 42) is used to transfer processed statistics data (report data) from Ac-

sets number of systems with solutions, which don’t match. tivityStatistics to statisticsreport.jsp.

e public void addNotMatchSystems(int notmatch); Fields:
increases number of systems with solutions, which don’t match, by notmatch. e private String domain;
e public int getNotMatchSystems(); requested domain.
returns number of systems with solutions, which don’t match. e private String metric;
e public void setSystemTime(float systime); requested metric.
sets system time. Constructors:

e public void addSystem Time(float systime);

increases system time by systime. e Report(String domain, String metric);

.) constructs new Report object with corresponding domain and metric attributes.
e public float getSystemTime();

returns system time. Methods:

e public void setWorkTime(float worktime); e public void setDomain(String domain);
sets work time. sets domain.

e public void addWorkTime(float worktime); e public String getDomain();
increases work time by worktime. returns domain.

e public float getWorkTime(); e public void setMetric(String domain);
returns work time. sets metric.

e public void setMemory(int memory); e public String getMetric();

sets memory. returns metric.

Student Software Engineering Project: Web-SynDic

5.8.3 Class ActivityStatistics

Class ActivityStatistics (see Fig. 42) is used to process statistics data and prepare report accord-

ing to requested domain and metric.

Fields:

e StatisticsStore ss;
instance of StatisticsStore object.

e public static final int NICKNAME;

specifies nickname as report domain.

e public static final int IP_ADDRESS;
specifies IP address as report domain.

e public static final int GENERATED_SYSTEMS;

specifies number of generated systems as report metric.

e public static final int INPUT_SYSTEMS;

specifies number of input systems as report metric.
e public static final int SOLVED _SYSTEMS;

specifies number of solved systems as report metric.

e public static final int ACKNOWLEDGED_SYSTEMS;
specifies number of acknowledged systems as report metric.

e public static final int DISCREPANCIES;

specifies number of ANLDE systems, which discrepances solving as report metric.

e public static final int USED_SYSTEM_TIME;

specifies summary used system time as report metric.
e public static final int USED_WORK_TIME;

specifies summary used work time as report metric.
e public static final int SESSION_WORK_TIME;

specifies summary session work time as report metric.

e public static final int SESSIONS;
specifies number of sessions as report metric.

Constructors:

e ActivityStatistics(StatisticsStore ss);
constructs new ActivityStatistics object.

Student Software Engineering Project: Web-SynDic 88

Methods:

e public List getStatisticsReport(int domain, int metric);
prepares statistics report according to requested domain and metric:
1. tries to get list of Statistics objects from StatisticsStore;
2. processes list of Statistics objects using algorithm:
(a) get domain value (nickname or IP address) Statistics object (according to
domain specified);
(b) find Statistics object with the same domain value;

(c) add some of found Statistics object metrics values (according to metric spec-
ified) to initial Statistics object metrics values;

(d) remove found Statistics object from the list;
(e) repeat for Statistics objects with other domain values;
3. prepares sorted list of Report objects;

4. returns list of Report objects.

6 Configuration and Installation
This section describes configuration design of the Web-SynDic system as well as its installation
related issues.

6.1 Deployment Directory Layout

Web system’s files are arranged in the following directory hierarchy according to the Java
Servlet Specification (Version 2.3), Chapter 9:

/ the document root of the web system, contains JSP, HTML and CSS files;
/images contains images used in the web-pages;

/WEB-INF contains non-public part of the web system (directory contents are not available
to clients);

/WEB-INF /classes contains java class files (organized in packages);

/WEB-INF /algorithms contains algorithm server’s configuration, external solvers and gen-
erators (web system may be configured to use another directory using “algorithmServerDi-

rectory” initial ServletContext parameter);

Student Software Engineering Project: Web-SynDic 89

/WEB-INF /datastore — data store directory, the web system must have write access to
this directory (web system may be configured to use another directory using “dataS-

toreDirectory” initial ServletContext parameter);
/WEB-INF /datastore/statistics contains log files for computing activity statistics;
/WEB-INF /datastore/accounts contains user profiles;

/WEB-INF /datastore/limits-default file for storing default limits;

6.2 Configuration

Configuration files:

/WEB-INF /web.xml — the Web Application Deployment Descriptor, initial ServletContext
parameters, session timeout and other configuration options are set here (see the Java
Servlet Specification, Appendix A);

/WEB-INF /algorithms/solvers.properties list of available solvers with their support-
ing classes (in the format used by class java.util.Properties, where keys are solvers direc-
tory names, values are class names, see the API documentation for the java.util. Properties
class, load() method);

/WEB-INF /algorithms/generators.properties — list of available generators with their
supporting classes (in the format used by class java.util.Properties, where keys are solvers

directory names, values are class names);

6.3 Source Tree

The web system’s source code organized in the following hierarchy in the CVS repository:

/src — java sources (organized in packages), all Web-SynDic classes belongs to the sub-

packages of the ru.petrsu.websyndic package;
/web — static content, the document root of the web system;
/doc — documentation directory;
/build — compilation directory;

/build.xml — targets definitions for the Ant build tool.

Student Software Engineering Project: Web-SynDic 90

6.4 Building and Installing

The following ant targets may be used to build and deploy the web-system:
compile (default): compiles the we-system;

clear: removes compiled class-files;

install: installs the web-system into the servlet container;

remove: removes the web-system form the servlet container;

reload: reloads the web-system installed in the servler container;

dist: creates a binary distribution of the web-system;

javadoc: creates Javadoc API documentation;

test: invokes Test class in the default package (used for testing subsystems).

Use the following command to invoke a target:
ant <target>

